Loading…
Prediction performance of a hedonic pricing model for housing
Recent studies point to the superiority of the prediction ability of semiparametric methods over conventional, parametric hedonic price functions for housing. This study evaluates the predictive performance of three parametric forms-linear, quadratic, and cubic-and uses an index of location to incor...
Saved in:
Published in: | The Appraisal journal 2005-03, Vol.73 (2), p.198 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | 198 |
container_title | The Appraisal journal |
container_volume | 73 |
creator | Laurice, Jennifer Bhattacharya, Radha |
description | Recent studies point to the superiority of the prediction ability of semiparametric methods over conventional, parametric hedonic price functions for housing. This study evaluates the predictive performance of three parametric forms-linear, quadratic, and cubic-and uses an index of location to incorporate neighborhood effects on sale prices. For the cubic model, the percentage mean absolute prediction errors range from 11.43% to 14.89% in the holdout sample. The model presented performs reasonably well and is computationally simpler than semiparametric methods, reaffirming that an augmented parametric model is an inexpensive tool that can serve as a valuable complement to the appraisal process. [PUBLICATION ABSTRACT] |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_199965797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A132843640</galeid><sourcerecordid>A132843640</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1047-81e0ba916feb21973a0f76ebe57ceacdb8d336b5882967da4b9f468174833ffd3</originalsourceid><addsrcrecordid>eNptjctqwzAURLVooanbfxDdu0iWrMeiixD6gkC6aNdGlq4cBVtyZef_K0iXYRaXGc6duUEbQgirJVHyDt0vy6lY0vJ2g16-Mrhg15AiniH7lCcTLeDkscFHcCkGi-ccbIgDnpKDERcGH9N5KckDuvVmXODx_1bo5-31e_dR7w_vn7vtvh4o4bJWFEhvNBUe-oZqyQzxUkAPrbRgrOuVY0z0rVKNFtIZ3mvPhaKSK8a8d6xCT5feOaffMyxrd0rnHMtkR7XWopWltEL1BRrMCF2IPq3Z2AEiZDOmCD6UeEtZozgTnBT--Qpf5GAK9srDH4fAYpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199965797</pqid></control><display><type>article</type><title>Prediction performance of a hedonic pricing model for housing</title><source>ABI/INFORM Global</source><source>Business Source Ultimate (EBSCOHost)</source><creator>Laurice, Jennifer ; Bhattacharya, Radha</creator><creatorcontrib>Laurice, Jennifer ; Bhattacharya, Radha</creatorcontrib><description>Recent studies point to the superiority of the prediction ability of semiparametric methods over conventional, parametric hedonic price functions for housing. This study evaluates the predictive performance of three parametric forms-linear, quadratic, and cubic-and uses an index of location to incorporate neighborhood effects on sale prices. For the cubic model, the percentage mean absolute prediction errors range from 11.43% to 14.89% in the holdout sample. The model presented performs reasonably well and is computationally simpler than semiparametric methods, reaffirming that an augmented parametric model is an inexpensive tool that can serve as a valuable complement to the appraisal process. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-7087</identifier><identifier>CODEN: APPJA5</identifier><language>eng</language><publisher>Chicago: The Appraisal Institute</publisher><subject>Appraisals ; Automation ; Censuses ; Dependent variables ; Dwellings ; Forecasts and trends ; Housing ; Management ; Mathematical models ; Methods ; Mortgage rates ; Neighborhoods ; Prices ; Pricing ; Statistics ; Studies ; Variables</subject><ispartof>The Appraisal journal, 2005-03, Vol.73 (2), p.198</ispartof><rights>COPYRIGHT 2005 The Appraisal Institute</rights><rights>Copyright Appraisal Institute Spring 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/199965797/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/199965797?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Laurice, Jennifer</creatorcontrib><creatorcontrib>Bhattacharya, Radha</creatorcontrib><title>Prediction performance of a hedonic pricing model for housing</title><title>The Appraisal journal</title><description>Recent studies point to the superiority of the prediction ability of semiparametric methods over conventional, parametric hedonic price functions for housing. This study evaluates the predictive performance of three parametric forms-linear, quadratic, and cubic-and uses an index of location to incorporate neighborhood effects on sale prices. For the cubic model, the percentage mean absolute prediction errors range from 11.43% to 14.89% in the holdout sample. The model presented performs reasonably well and is computationally simpler than semiparametric methods, reaffirming that an augmented parametric model is an inexpensive tool that can serve as a valuable complement to the appraisal process. [PUBLICATION ABSTRACT]</description><subject>Appraisals</subject><subject>Automation</subject><subject>Censuses</subject><subject>Dependent variables</subject><subject>Dwellings</subject><subject>Forecasts and trends</subject><subject>Housing</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Mortgage rates</subject><subject>Neighborhoods</subject><subject>Prices</subject><subject>Pricing</subject><subject>Statistics</subject><subject>Studies</subject><subject>Variables</subject><issn>0003-7087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNptjctqwzAURLVooanbfxDdu0iWrMeiixD6gkC6aNdGlq4cBVtyZef_K0iXYRaXGc6duUEbQgirJVHyDt0vy6lY0vJ2g16-Mrhg15AiniH7lCcTLeDkscFHcCkGi-ccbIgDnpKDERcGH9N5KckDuvVmXODx_1bo5-31e_dR7w_vn7vtvh4o4bJWFEhvNBUe-oZqyQzxUkAPrbRgrOuVY0z0rVKNFtIZ3mvPhaKSK8a8d6xCT5feOaffMyxrd0rnHMtkR7XWopWltEL1BRrMCF2IPq3Z2AEiZDOmCD6UeEtZozgTnBT--Qpf5GAK9srDH4fAYpQ</recordid><startdate>20050322</startdate><enddate>20050322</enddate><creator>Laurice, Jennifer</creator><creator>Bhattacharya, Radha</creator><general>The Appraisal Institute</general><general>Appraisal Institute</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>87Z</scope><scope>885</scope><scope>8A9</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M1F</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20050322</creationdate><title>Prediction performance of a hedonic pricing model for housing</title><author>Laurice, Jennifer ; Bhattacharya, Radha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1047-81e0ba916feb21973a0f76ebe57ceacdb8d336b5882967da4b9f468174833ffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Appraisals</topic><topic>Automation</topic><topic>Censuses</topic><topic>Dependent variables</topic><topic>Dwellings</topic><topic>Forecasts and trends</topic><topic>Housing</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Mortgage rates</topic><topic>Neighborhoods</topic><topic>Prices</topic><topic>Pricing</topic><topic>Statistics</topic><topic>Studies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laurice, Jennifer</creatorcontrib><creatorcontrib>Bhattacharya, Radha</creatorcontrib><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting & Tax Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Banking Information Database (Alumni Edition)</collection><collection>Accounting & Tax Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Accounting, Tax & Banking Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Accounting, Tax & Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Banking Information Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The Appraisal journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laurice, Jennifer</au><au>Bhattacharya, Radha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction performance of a hedonic pricing model for housing</atitle><jtitle>The Appraisal journal</jtitle><date>2005-03-22</date><risdate>2005</risdate><volume>73</volume><issue>2</issue><spage>198</spage><pages>198-</pages><issn>0003-7087</issn><coden>APPJA5</coden><abstract>Recent studies point to the superiority of the prediction ability of semiparametric methods over conventional, parametric hedonic price functions for housing. This study evaluates the predictive performance of three parametric forms-linear, quadratic, and cubic-and uses an index of location to incorporate neighborhood effects on sale prices. For the cubic model, the percentage mean absolute prediction errors range from 11.43% to 14.89% in the holdout sample. The model presented performs reasonably well and is computationally simpler than semiparametric methods, reaffirming that an augmented parametric model is an inexpensive tool that can serve as a valuable complement to the appraisal process. [PUBLICATION ABSTRACT]</abstract><cop>Chicago</cop><pub>The Appraisal Institute</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-7087 |
ispartof | The Appraisal journal, 2005-03, Vol.73 (2), p.198 |
issn | 0003-7087 |
language | eng |
recordid | cdi_proquest_journals_199965797 |
source | ABI/INFORM Global; Business Source Ultimate (EBSCOHost) |
subjects | Appraisals Automation Censuses Dependent variables Dwellings Forecasts and trends Housing Management Mathematical models Methods Mortgage rates Neighborhoods Prices Pricing Statistics Studies Variables |
title | Prediction performance of a hedonic pricing model for housing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20performance%20of%20a%20hedonic%20pricing%20model%20for%20housing&rft.jtitle=The%20Appraisal%20journal&rft.au=Laurice,%20Jennifer&rft.date=2005-03-22&rft.volume=73&rft.issue=2&rft.spage=198&rft.pages=198-&rft.issn=0003-7087&rft.coden=APPJA5&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA132843640%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g1047-81e0ba916feb21973a0f76ebe57ceacdb8d336b5882967da4b9f468174833ffd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=199965797&rft_id=info:pmid/&rft_galeid=A132843640&rfr_iscdi=true |