Loading…

Prediction performance of a hedonic pricing model for housing

Recent studies point to the superiority of the prediction ability of semiparametric methods over conventional, parametric hedonic price functions for housing. This study evaluates the predictive performance of three parametric forms-linear, quadratic, and cubic-and uses an index of location to incor...

Full description

Saved in:
Bibliographic Details
Published in:The Appraisal journal 2005-03, Vol.73 (2), p.198
Main Authors: Laurice, Jennifer, Bhattacharya, Radha
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 2
container_start_page 198
container_title The Appraisal journal
container_volume 73
creator Laurice, Jennifer
Bhattacharya, Radha
description Recent studies point to the superiority of the prediction ability of semiparametric methods over conventional, parametric hedonic price functions for housing. This study evaluates the predictive performance of three parametric forms-linear, quadratic, and cubic-and uses an index of location to incorporate neighborhood effects on sale prices. For the cubic model, the percentage mean absolute prediction errors range from 11.43% to 14.89% in the holdout sample. The model presented performs reasonably well and is computationally simpler than semiparametric methods, reaffirming that an augmented parametric model is an inexpensive tool that can serve as a valuable complement to the appraisal process. [PUBLICATION ABSTRACT]
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_199965797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A132843640</galeid><sourcerecordid>A132843640</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1047-81e0ba916feb21973a0f76ebe57ceacdb8d336b5882967da4b9f468174833ffd3</originalsourceid><addsrcrecordid>eNptjctqwzAURLVooanbfxDdu0iWrMeiixD6gkC6aNdGlq4cBVtyZef_K0iXYRaXGc6duUEbQgirJVHyDt0vy6lY0vJ2g16-Mrhg15AiniH7lCcTLeDkscFHcCkGi-ccbIgDnpKDERcGH9N5KckDuvVmXODx_1bo5-31e_dR7w_vn7vtvh4o4bJWFEhvNBUe-oZqyQzxUkAPrbRgrOuVY0z0rVKNFtIZ3mvPhaKSK8a8d6xCT5feOaffMyxrd0rnHMtkR7XWopWltEL1BRrMCF2IPq3Z2AEiZDOmCD6UeEtZozgTnBT--Qpf5GAK9srDH4fAYpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199965797</pqid></control><display><type>article</type><title>Prediction performance of a hedonic pricing model for housing</title><source>ABI/INFORM Global</source><source>Business Source Ultimate (EBSCOHost)</source><creator>Laurice, Jennifer ; Bhattacharya, Radha</creator><creatorcontrib>Laurice, Jennifer ; Bhattacharya, Radha</creatorcontrib><description>Recent studies point to the superiority of the prediction ability of semiparametric methods over conventional, parametric hedonic price functions for housing. This study evaluates the predictive performance of three parametric forms-linear, quadratic, and cubic-and uses an index of location to incorporate neighborhood effects on sale prices. For the cubic model, the percentage mean absolute prediction errors range from 11.43% to 14.89% in the holdout sample. The model presented performs reasonably well and is computationally simpler than semiparametric methods, reaffirming that an augmented parametric model is an inexpensive tool that can serve as a valuable complement to the appraisal process. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0003-7087</identifier><identifier>CODEN: APPJA5</identifier><language>eng</language><publisher>Chicago: The Appraisal Institute</publisher><subject>Appraisals ; Automation ; Censuses ; Dependent variables ; Dwellings ; Forecasts and trends ; Housing ; Management ; Mathematical models ; Methods ; Mortgage rates ; Neighborhoods ; Prices ; Pricing ; Statistics ; Studies ; Variables</subject><ispartof>The Appraisal journal, 2005-03, Vol.73 (2), p.198</ispartof><rights>COPYRIGHT 2005 The Appraisal Institute</rights><rights>Copyright Appraisal Institute Spring 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/199965797/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/199965797?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Laurice, Jennifer</creatorcontrib><creatorcontrib>Bhattacharya, Radha</creatorcontrib><title>Prediction performance of a hedonic pricing model for housing</title><title>The Appraisal journal</title><description>Recent studies point to the superiority of the prediction ability of semiparametric methods over conventional, parametric hedonic price functions for housing. This study evaluates the predictive performance of three parametric forms-linear, quadratic, and cubic-and uses an index of location to incorporate neighborhood effects on sale prices. For the cubic model, the percentage mean absolute prediction errors range from 11.43% to 14.89% in the holdout sample. The model presented performs reasonably well and is computationally simpler than semiparametric methods, reaffirming that an augmented parametric model is an inexpensive tool that can serve as a valuable complement to the appraisal process. [PUBLICATION ABSTRACT]</description><subject>Appraisals</subject><subject>Automation</subject><subject>Censuses</subject><subject>Dependent variables</subject><subject>Dwellings</subject><subject>Forecasts and trends</subject><subject>Housing</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Mortgage rates</subject><subject>Neighborhoods</subject><subject>Prices</subject><subject>Pricing</subject><subject>Statistics</subject><subject>Studies</subject><subject>Variables</subject><issn>0003-7087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNptjctqwzAURLVooanbfxDdu0iWrMeiixD6gkC6aNdGlq4cBVtyZef_K0iXYRaXGc6duUEbQgirJVHyDt0vy6lY0vJ2g16-Mrhg15AiniH7lCcTLeDkscFHcCkGi-ccbIgDnpKDERcGH9N5KckDuvVmXODx_1bo5-31e_dR7w_vn7vtvh4o4bJWFEhvNBUe-oZqyQzxUkAPrbRgrOuVY0z0rVKNFtIZ3mvPhaKSK8a8d6xCT5feOaffMyxrd0rnHMtkR7XWopWltEL1BRrMCF2IPq3Z2AEiZDOmCD6UeEtZozgTnBT--Qpf5GAK9srDH4fAYpQ</recordid><startdate>20050322</startdate><enddate>20050322</enddate><creator>Laurice, Jennifer</creator><creator>Bhattacharya, Radha</creator><general>The Appraisal Institute</general><general>Appraisal Institute</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>87Z</scope><scope>885</scope><scope>8A9</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M1F</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20050322</creationdate><title>Prediction performance of a hedonic pricing model for housing</title><author>Laurice, Jennifer ; Bhattacharya, Radha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1047-81e0ba916feb21973a0f76ebe57ceacdb8d336b5882967da4b9f468174833ffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Appraisals</topic><topic>Automation</topic><topic>Censuses</topic><topic>Dependent variables</topic><topic>Dwellings</topic><topic>Forecasts and trends</topic><topic>Housing</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Mortgage rates</topic><topic>Neighborhoods</topic><topic>Prices</topic><topic>Pricing</topic><topic>Statistics</topic><topic>Studies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laurice, Jennifer</creatorcontrib><creatorcontrib>Bhattacharya, Radha</creatorcontrib><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting &amp; Tax Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Banking Information Database (Alumni Edition)</collection><collection>Accounting &amp; Tax Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Accounting, Tax &amp; Banking Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Accounting, Tax &amp; Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Banking Information Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The Appraisal journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laurice, Jennifer</au><au>Bhattacharya, Radha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction performance of a hedonic pricing model for housing</atitle><jtitle>The Appraisal journal</jtitle><date>2005-03-22</date><risdate>2005</risdate><volume>73</volume><issue>2</issue><spage>198</spage><pages>198-</pages><issn>0003-7087</issn><coden>APPJA5</coden><abstract>Recent studies point to the superiority of the prediction ability of semiparametric methods over conventional, parametric hedonic price functions for housing. This study evaluates the predictive performance of three parametric forms-linear, quadratic, and cubic-and uses an index of location to incorporate neighborhood effects on sale prices. For the cubic model, the percentage mean absolute prediction errors range from 11.43% to 14.89% in the holdout sample. The model presented performs reasonably well and is computationally simpler than semiparametric methods, reaffirming that an augmented parametric model is an inexpensive tool that can serve as a valuable complement to the appraisal process. [PUBLICATION ABSTRACT]</abstract><cop>Chicago</cop><pub>The Appraisal Institute</pub></addata></record>
fulltext fulltext
identifier ISSN: 0003-7087
ispartof The Appraisal journal, 2005-03, Vol.73 (2), p.198
issn 0003-7087
language eng
recordid cdi_proquest_journals_199965797
source ABI/INFORM Global; Business Source Ultimate (EBSCOHost)
subjects Appraisals
Automation
Censuses
Dependent variables
Dwellings
Forecasts and trends
Housing
Management
Mathematical models
Methods
Mortgage rates
Neighborhoods
Prices
Pricing
Statistics
Studies
Variables
title Prediction performance of a hedonic pricing model for housing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20performance%20of%20a%20hedonic%20pricing%20model%20for%20housing&rft.jtitle=The%20Appraisal%20journal&rft.au=Laurice,%20Jennifer&rft.date=2005-03-22&rft.volume=73&rft.issue=2&rft.spage=198&rft.pages=198-&rft.issn=0003-7087&rft.coden=APPJA5&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA132843640%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g1047-81e0ba916feb21973a0f76ebe57ceacdb8d336b5882967da4b9f468174833ffd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=199965797&rft_id=info:pmid/&rft_galeid=A132843640&rfr_iscdi=true