Loading…
Background Stress State Before the 2008 Wenchuan Earthquake and the Dynamics of the Longmen Shan Thrust Belt
A stress reconstruction was performed based on focal mechanisms around the Longmen Shan region prior to the 2008 M s 8.0 Wenchuan earthquake using a newly developed algorithm (known as MCA). The method determines the stress tensor, including principal axes orientations, and quantitative stress value...
Saved in:
Published in: | Pure and applied geophysics 2018-07, Vol.175 (7), p.2503-2512 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A stress reconstruction was performed based on focal mechanisms around the Longmen Shan region prior to the 2008
M
s
8.0 Wenchuan earthquake using a newly developed algorithm (known as MCA). The method determines the stress tensor, including principal axes orientations, and quantitative stress values, such as the effective confining pressure and maximum shear stress. The results of the MCA application using data recorded by the regional network from 1989 to April 2008 show the background stress state around the Longmen Shan belt before the Wenchuan earthquake. The characteristics of the stress orientation reveal that the Longmen Shan region is primarily under the eastward extrusion of the eastern Tibetan plateau. Non-uniform quantitative stress distributions show low stress levels in the upper crust of the middle Longmen Shan segment, which is consistent with the observed high-angle reverse faulting associated with the 2008 Wenchuan earthquake. In contrast, other study areas, such as the Bayankela block and the NW strip extending to the Sichuan basin, show high stress intensity. This feature coincides with heterogeneity in the wave speed image of the upper crust in this region, which shows high S-wave speed in the high stress areas and comparatively low S-wave speed in low stress areas. Deformation features across the Longmen Shan belt with the slow rates of convergence determined by GPS and the distribution of surface deformation rates also are in keeping with our stress results. We propose a dynamic model in which sloping uplift under the Longmen Shan, which partly counteracts the pushing force from the eastern plateau, causes the low-quantitative stresses in the upper crust beneath the Longmen Shan. The decreasing gravitational potential energy beneath the Longmen Shan leads to earthquake thrust faulting and plays an important role in the geodynamics of the area that results from ductile thickening of the deep crust behind the Sichuan basin, creating a narrow, steep margin. |
---|---|
ISSN: | 0033-4553 1420-9136 |
DOI: | 10.1007/s00024-018-1800-6 |