Loading…

Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2

Ti 5 Si 3 , Ti 5 Si 3 /TiC, and Ti 5 Si 3 /Ti 3 SiC 2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO 2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl 2 . The pressed porous mixture pellets were used a...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2018-04, Vol.49 (2), p.790-802
Main Authors: Li, Shangshu, Zou, Xingli, Zheng, Kai, Lu, Xionggang, Chen, Chaoyi, Li, Xin, Xu, Qian, Zhou, Zhongfu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-177315d9cd099d11b8b5e992efcb321be8a598efe2d63e0e8364ab76a50c2f8c3
cites cdi_FETCH-LOGICAL-c425t-177315d9cd099d11b8b5e992efcb321be8a598efe2d63e0e8364ab76a50c2f8c3
container_end_page 802
container_issue 2
container_start_page 790
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 49
creator Li, Shangshu
Zou, Xingli
Zheng, Kai
Lu, Xionggang
Chen, Chaoyi
Li, Xin
Xu, Qian
Zhou, Zhongfu
description Ti 5 Si 3 , Ti 5 Si 3 /TiC, and Ti 5 Si 3 /Ti 3 SiC 2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO 2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl 2 . The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO 2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al) 2 O 6 , (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti 5 Si 3 , TiC, and Ti 3 SiC 2 . It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.
doi_str_mv 10.1007/s11663-018-1192-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1999867931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999867931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-177315d9cd099d11b8b5e992efcb321be8a598efe2d63e0e8364ab76a50c2f8c3</originalsourceid><addsrcrecordid>eNp1UEFOwzAQjBBIlMIDuFniWlOvXTvxkUYUkIo4tJwtx9kUV2lS7PTQ35OoleDCaXZXM6OdSZJ7YI_AWDqNAEoJyiCjAJpTdpGMQM4EBQ3qsp9ZKqhUIK-Tmxi3jDGltRglu-caXRfaeGy6L4w-krYiay9XXkzOOF37fEJsU_7uYuVzTqrQ7vobnaMNvtmQeW1jRxaH0FiHZFXbDfENeW_rDhuS27zmt8lVZeuId2ccJ5-L53X-SpcfL2_505K6GZcdhTQVIEvtSqZ1CVBkhUStOVauEBwKzKzUGVbISyWQYSbUzBapspI5XmVOjJOHk-8-tN8HjJ3ZtsNbdTSgtc5UqgX0LDixXJ8_BqzMPvidDUcDzAytmlOrpm_VDK0a1mv4SRP3Q2YMf5z_Ff0A1oV3Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999867931</pqid></control><display><type>article</type><title>Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2</title><source>Springer Nature</source><creator>Li, Shangshu ; Zou, Xingli ; Zheng, Kai ; Lu, Xionggang ; Chen, Chaoyi ; Li, Xin ; Xu, Qian ; Zhou, Zhongfu</creator><creatorcontrib>Li, Shangshu ; Zou, Xingli ; Zheng, Kai ; Lu, Xionggang ; Chen, Chaoyi ; Li, Xin ; Xu, Qian ; Zhou, Zhongfu</creatorcontrib><description>Ti 5 Si 3 , Ti 5 Si 3 /TiC, and Ti 5 Si 3 /Ti 3 SiC 2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO 2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl 2 . The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO 2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al) 2 O 6 , (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti 5 Si 3 , TiC, and Ti 3 SiC 2 . It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-018-1192-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum base alloys ; Anodes ; Bearing ; Blast furnace slags ; Calcium chloride ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electrowinning ; Impurities ; Magnesium ; Materials Science ; Metallic Materials ; Metallurgy ; Minerals ; Nanotechnology ; Pellets ; Phase composition ; Silicon ; Steel industry ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Titanium base alloys ; Titanium carbide ; Titanium oxides</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2018-04, Vol.49 (2), p.790-802</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2018</rights><rights>Metallurgical and Materials Transactions B is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-177315d9cd099d11b8b5e992efcb321be8a598efe2d63e0e8364ab76a50c2f8c3</citedby><cites>FETCH-LOGICAL-c425t-177315d9cd099d11b8b5e992efcb321be8a598efe2d63e0e8364ab76a50c2f8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Shangshu</creatorcontrib><creatorcontrib>Zou, Xingli</creatorcontrib><creatorcontrib>Zheng, Kai</creatorcontrib><creatorcontrib>Lu, Xionggang</creatorcontrib><creatorcontrib>Chen, Chaoyi</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Zhou, Zhongfu</creatorcontrib><title>Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>Ti 5 Si 3 , Ti 5 Si 3 /TiC, and Ti 5 Si 3 /Ti 3 SiC 2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO 2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl 2 . The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO 2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al) 2 O 6 , (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti 5 Si 3 , TiC, and Ti 3 SiC 2 . It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.</description><subject>Aluminum base alloys</subject><subject>Anodes</subject><subject>Bearing</subject><subject>Blast furnace slags</subject><subject>Calcium chloride</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electrowinning</subject><subject>Impurities</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Minerals</subject><subject>Nanotechnology</subject><subject>Pellets</subject><subject>Phase composition</subject><subject>Silicon</subject><subject>Steel industry</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium base alloys</subject><subject>Titanium carbide</subject><subject>Titanium oxides</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UEFOwzAQjBBIlMIDuFniWlOvXTvxkUYUkIo4tJwtx9kUV2lS7PTQ35OoleDCaXZXM6OdSZJ7YI_AWDqNAEoJyiCjAJpTdpGMQM4EBQ3qsp9ZKqhUIK-Tmxi3jDGltRglu-caXRfaeGy6L4w-krYiay9XXkzOOF37fEJsU_7uYuVzTqrQ7vobnaMNvtmQeW1jRxaH0FiHZFXbDfENeW_rDhuS27zmt8lVZeuId2ccJ5-L53X-SpcfL2_505K6GZcdhTQVIEvtSqZ1CVBkhUStOVauEBwKzKzUGVbISyWQYSbUzBapspI5XmVOjJOHk-8-tN8HjJ3ZtsNbdTSgtc5UqgX0LDixXJ8_BqzMPvidDUcDzAytmlOrpm_VDK0a1mv4SRP3Q2YMf5z_Ff0A1oV3Jw</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Li, Shangshu</creator><creator>Zou, Xingli</creator><creator>Zheng, Kai</creator><creator>Lu, Xionggang</creator><creator>Chen, Chaoyi</creator><creator>Li, Xin</creator><creator>Xu, Qian</creator><creator>Zhou, Zhongfu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180401</creationdate><title>Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2</title><author>Li, Shangshu ; Zou, Xingli ; Zheng, Kai ; Lu, Xionggang ; Chen, Chaoyi ; Li, Xin ; Xu, Qian ; Zhou, Zhongfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-177315d9cd099d11b8b5e992efcb321be8a598efe2d63e0e8364ab76a50c2f8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum base alloys</topic><topic>Anodes</topic><topic>Bearing</topic><topic>Blast furnace slags</topic><topic>Calcium chloride</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electrowinning</topic><topic>Impurities</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Minerals</topic><topic>Nanotechnology</topic><topic>Pellets</topic><topic>Phase composition</topic><topic>Silicon</topic><topic>Steel industry</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium base alloys</topic><topic>Titanium carbide</topic><topic>Titanium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shangshu</creatorcontrib><creatorcontrib>Zou, Xingli</creatorcontrib><creatorcontrib>Zheng, Kai</creatorcontrib><creatorcontrib>Lu, Xionggang</creatorcontrib><creatorcontrib>Chen, Chaoyi</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Zhou, Zhongfu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shangshu</au><au>Zou, Xingli</au><au>Zheng, Kai</au><au>Lu, Xionggang</au><au>Chen, Chaoyi</au><au>Li, Xin</au><au>Xu, Qian</au><au>Zhou, Zhongfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>49</volume><issue>2</issue><spage>790</spage><epage>802</epage><pages>790-802</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>Ti 5 Si 3 , Ti 5 Si 3 /TiC, and Ti 5 Si 3 /Ti 3 SiC 2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO 2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl 2 . The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO 2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al) 2 O 6 , (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti 5 Si 3 , TiC, and Ti 3 SiC 2 . It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-018-1192-0</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2018-04, Vol.49 (2), p.790-802
issn 1073-5615
1543-1916
language eng
recordid cdi_proquest_journals_1999867931
source Springer Nature
subjects Aluminum base alloys
Anodes
Bearing
Blast furnace slags
Calcium chloride
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electrowinning
Impurities
Magnesium
Materials Science
Metallic Materials
Metallurgy
Minerals
Nanotechnology
Pellets
Phase composition
Silicon
Steel industry
Structural Materials
Surfaces and Interfaces
Thin Films
Titanium base alloys
Titanium carbide
Titanium oxides
title Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrosynthesis%20of%20Ti5Si3,%20Ti5Si3/TiC,%20and%20Ti5Si3/Ti3SiC2%20from%20Ti-Bearing%20Blast%20Furnace%20Slag%20in%20Molten%20CaCl2&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Li,%20Shangshu&rft.date=2018-04-01&rft.volume=49&rft.issue=2&rft.spage=790&rft.epage=802&rft.pages=790-802&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-018-1192-0&rft_dat=%3Cproquest_cross%3E1999867931%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-177315d9cd099d11b8b5e992efcb321be8a598efe2d63e0e8364ab76a50c2f8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1999867931&rft_id=info:pmid/&rfr_iscdi=true