Loading…
Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2
Ti 5 Si 3 , Ti 5 Si 3 /TiC, and Ti 5 Si 3 /Ti 3 SiC 2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO 2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl 2 . The pressed porous mixture pellets were used a...
Saved in:
Published in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2018-04, Vol.49 (2), p.790-802 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c425t-177315d9cd099d11b8b5e992efcb321be8a598efe2d63e0e8364ab76a50c2f8c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-177315d9cd099d11b8b5e992efcb321be8a598efe2d63e0e8364ab76a50c2f8c3 |
container_end_page | 802 |
container_issue | 2 |
container_start_page | 790 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 49 |
creator | Li, Shangshu Zou, Xingli Zheng, Kai Lu, Xionggang Chen, Chaoyi Li, Xin Xu, Qian Zhou, Zhongfu |
description | Ti
5
Si
3
, Ti
5
Si
3
/TiC, and Ti
5
Si
3
/Ti
3
SiC
2
have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO
2
and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl
2
. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements,
i.e.,
Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO
2
and/or C mixture precursors can be typically divided into four periods,
i.e.,
(i) the decomposition of initial Ca(Mg,Al)(Si,Al)
2
O
6
, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti
5
Si
3
, TiC, and Ti
3
SiC
2
. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores. |
doi_str_mv | 10.1007/s11663-018-1192-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1999867931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999867931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-177315d9cd099d11b8b5e992efcb321be8a598efe2d63e0e8364ab76a50c2f8c3</originalsourceid><addsrcrecordid>eNp1UEFOwzAQjBBIlMIDuFniWlOvXTvxkUYUkIo4tJwtx9kUV2lS7PTQ35OoleDCaXZXM6OdSZJ7YI_AWDqNAEoJyiCjAJpTdpGMQM4EBQ3qsp9ZKqhUIK-Tmxi3jDGltRglu-caXRfaeGy6L4w-krYiay9XXkzOOF37fEJsU_7uYuVzTqrQ7vobnaMNvtmQeW1jRxaH0FiHZFXbDfENeW_rDhuS27zmt8lVZeuId2ccJ5-L53X-SpcfL2_505K6GZcdhTQVIEvtSqZ1CVBkhUStOVauEBwKzKzUGVbISyWQYSbUzBapspI5XmVOjJOHk-8-tN8HjJ3ZtsNbdTSgtc5UqgX0LDixXJ8_BqzMPvidDUcDzAytmlOrpm_VDK0a1mv4SRP3Q2YMf5z_Ff0A1oV3Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999867931</pqid></control><display><type>article</type><title>Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2</title><source>Springer Nature</source><creator>Li, Shangshu ; Zou, Xingli ; Zheng, Kai ; Lu, Xionggang ; Chen, Chaoyi ; Li, Xin ; Xu, Qian ; Zhou, Zhongfu</creator><creatorcontrib>Li, Shangshu ; Zou, Xingli ; Zheng, Kai ; Lu, Xionggang ; Chen, Chaoyi ; Li, Xin ; Xu, Qian ; Zhou, Zhongfu</creatorcontrib><description>Ti
5
Si
3
, Ti
5
Si
3
/TiC, and Ti
5
Si
3
/Ti
3
SiC
2
have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO
2
and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl
2
. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements,
i.e.,
Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO
2
and/or C mixture precursors can be typically divided into four periods,
i.e.,
(i) the decomposition of initial Ca(Mg,Al)(Si,Al)
2
O
6
, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti
5
Si
3
, TiC, and Ti
3
SiC
2
. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-018-1192-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum base alloys ; Anodes ; Bearing ; Blast furnace slags ; Calcium chloride ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electrowinning ; Impurities ; Magnesium ; Materials Science ; Metallic Materials ; Metallurgy ; Minerals ; Nanotechnology ; Pellets ; Phase composition ; Silicon ; Steel industry ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Titanium base alloys ; Titanium carbide ; Titanium oxides</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2018-04, Vol.49 (2), p.790-802</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2018</rights><rights>Metallurgical and Materials Transactions B is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-177315d9cd099d11b8b5e992efcb321be8a598efe2d63e0e8364ab76a50c2f8c3</citedby><cites>FETCH-LOGICAL-c425t-177315d9cd099d11b8b5e992efcb321be8a598efe2d63e0e8364ab76a50c2f8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Shangshu</creatorcontrib><creatorcontrib>Zou, Xingli</creatorcontrib><creatorcontrib>Zheng, Kai</creatorcontrib><creatorcontrib>Lu, Xionggang</creatorcontrib><creatorcontrib>Chen, Chaoyi</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Zhou, Zhongfu</creatorcontrib><title>Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>Ti
5
Si
3
, Ti
5
Si
3
/TiC, and Ti
5
Si
3
/Ti
3
SiC
2
have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO
2
and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl
2
. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements,
i.e.,
Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO
2
and/or C mixture precursors can be typically divided into four periods,
i.e.,
(i) the decomposition of initial Ca(Mg,Al)(Si,Al)
2
O
6
, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti
5
Si
3
, TiC, and Ti
3
SiC
2
. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.</description><subject>Aluminum base alloys</subject><subject>Anodes</subject><subject>Bearing</subject><subject>Blast furnace slags</subject><subject>Calcium chloride</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electrowinning</subject><subject>Impurities</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Minerals</subject><subject>Nanotechnology</subject><subject>Pellets</subject><subject>Phase composition</subject><subject>Silicon</subject><subject>Steel industry</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium base alloys</subject><subject>Titanium carbide</subject><subject>Titanium oxides</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UEFOwzAQjBBIlMIDuFniWlOvXTvxkUYUkIo4tJwtx9kUV2lS7PTQ35OoleDCaXZXM6OdSZJ7YI_AWDqNAEoJyiCjAJpTdpGMQM4EBQ3qsp9ZKqhUIK-Tmxi3jDGltRglu-caXRfaeGy6L4w-krYiay9XXkzOOF37fEJsU_7uYuVzTqrQ7vobnaMNvtmQeW1jRxaH0FiHZFXbDfENeW_rDhuS27zmt8lVZeuId2ccJ5-L53X-SpcfL2_505K6GZcdhTQVIEvtSqZ1CVBkhUStOVauEBwKzKzUGVbISyWQYSbUzBapspI5XmVOjJOHk-8-tN8HjJ3ZtsNbdTSgtc5UqgX0LDixXJ8_BqzMPvidDUcDzAytmlOrpm_VDK0a1mv4SRP3Q2YMf5z_Ff0A1oV3Jw</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Li, Shangshu</creator><creator>Zou, Xingli</creator><creator>Zheng, Kai</creator><creator>Lu, Xionggang</creator><creator>Chen, Chaoyi</creator><creator>Li, Xin</creator><creator>Xu, Qian</creator><creator>Zhou, Zhongfu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180401</creationdate><title>Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2</title><author>Li, Shangshu ; Zou, Xingli ; Zheng, Kai ; Lu, Xionggang ; Chen, Chaoyi ; Li, Xin ; Xu, Qian ; Zhou, Zhongfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-177315d9cd099d11b8b5e992efcb321be8a598efe2d63e0e8364ab76a50c2f8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum base alloys</topic><topic>Anodes</topic><topic>Bearing</topic><topic>Blast furnace slags</topic><topic>Calcium chloride</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electrowinning</topic><topic>Impurities</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Minerals</topic><topic>Nanotechnology</topic><topic>Pellets</topic><topic>Phase composition</topic><topic>Silicon</topic><topic>Steel industry</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium base alloys</topic><topic>Titanium carbide</topic><topic>Titanium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shangshu</creatorcontrib><creatorcontrib>Zou, Xingli</creatorcontrib><creatorcontrib>Zheng, Kai</creatorcontrib><creatorcontrib>Lu, Xionggang</creatorcontrib><creatorcontrib>Chen, Chaoyi</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Zhou, Zhongfu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shangshu</au><au>Zou, Xingli</au><au>Zheng, Kai</au><au>Lu, Xionggang</au><au>Chen, Chaoyi</au><au>Li, Xin</au><au>Xu, Qian</au><au>Zhou, Zhongfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>49</volume><issue>2</issue><spage>790</spage><epage>802</epage><pages>790-802</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>Ti
5
Si
3
, Ti
5
Si
3
/TiC, and Ti
5
Si
3
/Ti
3
SiC
2
have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO
2
and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl
2
. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements,
i.e.,
Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO
2
and/or C mixture precursors can be typically divided into four periods,
i.e.,
(i) the decomposition of initial Ca(Mg,Al)(Si,Al)
2
O
6
, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti
5
Si
3
, TiC, and Ti
3
SiC
2
. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-018-1192-0</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2018-04, Vol.49 (2), p.790-802 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_proquest_journals_1999867931 |
source | Springer Nature |
subjects | Aluminum base alloys Anodes Bearing Blast furnace slags Calcium chloride Characterization and Evaluation of Materials Chemistry and Materials Science Electrowinning Impurities Magnesium Materials Science Metallic Materials Metallurgy Minerals Nanotechnology Pellets Phase composition Silicon Steel industry Structural Materials Surfaces and Interfaces Thin Films Titanium base alloys Titanium carbide Titanium oxides |
title | Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrosynthesis%20of%20Ti5Si3,%20Ti5Si3/TiC,%20and%20Ti5Si3/Ti3SiC2%20from%20Ti-Bearing%20Blast%20Furnace%20Slag%20in%20Molten%20CaCl2&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Li,%20Shangshu&rft.date=2018-04-01&rft.volume=49&rft.issue=2&rft.spage=790&rft.epage=802&rft.pages=790-802&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-018-1192-0&rft_dat=%3Cproquest_cross%3E1999867931%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-177315d9cd099d11b8b5e992efcb321be8a598efe2d63e0e8364ab76a50c2f8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1999867931&rft_id=info:pmid/&rfr_iscdi=true |