Loading…
High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications
Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol–gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated....
Saved in:
Published in: | Applied physics. A, Materials science & processing Materials science & processing, 2018-03, Vol.124 (3), p.1-7, Article 224 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-31d206e93a83c95b1445bca624055cdb98e0e2012d8e4bb17160854cafc3a0e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-31d206e93a83c95b1445bca624055cdb98e0e2012d8e4bb17160854cafc3a0e93 |
container_end_page | 7 |
container_issue | 3 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 124 |
creator | Serrao, Felcy Jyothi Sandeep, K. M. Bhat, Shreesha Dharmaprakash, S. M. |
description | Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol–gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated. Electron irradiation influences the changes in the structural properties and surface morphology of GZO thin films. X-ray diffraction analysis showed that the polycrystalline nature of the GZO films is unaffected by the high energy electron irradiation. The grain size and the surface roughness were found maximum for the GZO film irradiated with 10 kGy electron dosage. The average transmittance of GZO thin films decreased after electron irradiation. The optical band gap of Ga-doped ZnO films was decreased with the increase in the electron dosage. The electrical resistivity of GZO films decreased from 4.83 × 10
−3
to 8.725 × 10
−4
Ω cm, when the electron dosage was increased from 0 to 10 kGy. The variation in the optical and electrical properties in the Ga-doped ZnO thin films due to electron beam irradiation in the present study is useful in deciding their compatibility in optoelectronic device applications in electron radiation environment. |
doi_str_mv | 10.1007/s00339-018-1652-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2000296574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000296574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-31d206e93a83c95b1445bca624055cdb98e0e2012d8e4bb17160854cafc3a0e93</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgsMRvOf-IkI6qgRarUBRYWy3Gc1lUaBzsd2k-P24CYuOVOp_d7p3sI3VN4pAD5UwTgvCRAC0JlxsjxAk2o4IyA5HCJJlCKnBS8lNfoJsYtpBKMTZBbuPUG286G9QHb1poh-A67EHTt9ODSbJsmbSNO41yT2ve2xp_dCg8b1-HGtbuIGx-w7wf_yzuDY6-NxbrvW2fOPvEWXTW6jfbup0_Rx-vL-2xBlqv52-x5SQynciCc1gykLbkuuCmzigqRVUZLJiDLTF2VhQXLgLK6sKKqaE4lFJkwujFcQ-Km6GH07YP_2ts4qK3fhy6dVCx9zUqZ5SKp6KgywccYbKP64HY6HBQFdUpUjYmqlKg6JaqOiWEjE5O2W9vw5_w_9A2_b3pE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000296574</pqid></control><display><type>article</type><title>High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications</title><source>Springer Link</source><creator>Serrao, Felcy Jyothi ; Sandeep, K. M. ; Bhat, Shreesha ; Dharmaprakash, S. M.</creator><creatorcontrib>Serrao, Felcy Jyothi ; Sandeep, K. M. ; Bhat, Shreesha ; Dharmaprakash, S. M.</creatorcontrib><description>Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol–gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated. Electron irradiation influences the changes in the structural properties and surface morphology of GZO thin films. X-ray diffraction analysis showed that the polycrystalline nature of the GZO films is unaffected by the high energy electron irradiation. The grain size and the surface roughness were found maximum for the GZO film irradiated with 10 kGy electron dosage. The average transmittance of GZO thin films decreased after electron irradiation. The optical band gap of Ga-doped ZnO films was decreased with the increase in the electron dosage. The electrical resistivity of GZO films decreased from 4.83 × 10
−3
to 8.725 × 10
−4
Ω cm, when the electron dosage was increased from 0 to 10 kGy. The variation in the optical and electrical properties in the Ga-doped ZnO thin films due to electron beam irradiation in the present study is useful in deciding their compatibility in optoelectronic device applications in electron radiation environment.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-018-1652-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Characterization and Evaluation of Materials ; Coating effects ; Condensed Matter Physics ; Electrical properties ; Electron beams ; Electron irradiation ; Electron radiation ; Electrons ; Energy gap ; Gallium ; Machines ; Manufacturing ; Materials science ; Nanotechnology ; Optical and Electronic Materials ; Optical properties ; Optoelectronic devices ; Physics ; Physics and Astronomy ; Processes ; Radiation dosage ; Sol-gel processes ; Space applications ; Spin coating ; Surface roughness ; Surfaces and Interfaces ; Thickness ; Thin Films ; Zinc oxide</subject><ispartof>Applied physics. A, Materials science & processing, 2018-03, Vol.124 (3), p.1-7, Article 224</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-31d206e93a83c95b1445bca624055cdb98e0e2012d8e4bb17160854cafc3a0e93</citedby><cites>FETCH-LOGICAL-c316t-31d206e93a83c95b1445bca624055cdb98e0e2012d8e4bb17160854cafc3a0e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Serrao, Felcy Jyothi</creatorcontrib><creatorcontrib>Sandeep, K. M.</creatorcontrib><creatorcontrib>Bhat, Shreesha</creatorcontrib><creatorcontrib>Dharmaprakash, S. M.</creatorcontrib><title>High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol–gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated. Electron irradiation influences the changes in the structural properties and surface morphology of GZO thin films. X-ray diffraction analysis showed that the polycrystalline nature of the GZO films is unaffected by the high energy electron irradiation. The grain size and the surface roughness were found maximum for the GZO film irradiated with 10 kGy electron dosage. The average transmittance of GZO thin films decreased after electron irradiation. The optical band gap of Ga-doped ZnO films was decreased with the increase in the electron dosage. The electrical resistivity of GZO films decreased from 4.83 × 10
−3
to 8.725 × 10
−4
Ω cm, when the electron dosage was increased from 0 to 10 kGy. The variation in the optical and electrical properties in the Ga-doped ZnO thin films due to electron beam irradiation in the present study is useful in deciding their compatibility in optoelectronic device applications in electron radiation environment.</description><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Coating effects</subject><subject>Condensed Matter Physics</subject><subject>Electrical properties</subject><subject>Electron beams</subject><subject>Electron irradiation</subject><subject>Electron radiation</subject><subject>Electrons</subject><subject>Energy gap</subject><subject>Gallium</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Radiation dosage</subject><subject>Sol-gel processes</subject><subject>Space applications</subject><subject>Spin coating</subject><subject>Surface roughness</subject><subject>Surfaces and Interfaces</subject><subject>Thickness</subject><subject>Thin Films</subject><subject>Zinc oxide</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqXwAdgsMRvOf-IkI6qgRarUBRYWy3Gc1lUaBzsd2k-P24CYuOVOp_d7p3sI3VN4pAD5UwTgvCRAC0JlxsjxAk2o4IyA5HCJJlCKnBS8lNfoJsYtpBKMTZBbuPUG286G9QHb1poh-A67EHTt9ODSbJsmbSNO41yT2ve2xp_dCg8b1-HGtbuIGx-w7wf_yzuDY6-NxbrvW2fOPvEWXTW6jfbup0_Rx-vL-2xBlqv52-x5SQynciCc1gykLbkuuCmzigqRVUZLJiDLTF2VhQXLgLK6sKKqaE4lFJkwujFcQ-Km6GH07YP_2ts4qK3fhy6dVCx9zUqZ5SKp6KgywccYbKP64HY6HBQFdUpUjYmqlKg6JaqOiWEjE5O2W9vw5_w_9A2_b3pE</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Serrao, Felcy Jyothi</creator><creator>Sandeep, K. M.</creator><creator>Bhat, Shreesha</creator><creator>Dharmaprakash, S. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications</title><author>Serrao, Felcy Jyothi ; Sandeep, K. M. ; Bhat, Shreesha ; Dharmaprakash, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-31d206e93a83c95b1445bca624055cdb98e0e2012d8e4bb17160854cafc3a0e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Coating effects</topic><topic>Condensed Matter Physics</topic><topic>Electrical properties</topic><topic>Electron beams</topic><topic>Electron irradiation</topic><topic>Electron radiation</topic><topic>Electrons</topic><topic>Energy gap</topic><topic>Gallium</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Radiation dosage</topic><topic>Sol-gel processes</topic><topic>Space applications</topic><topic>Spin coating</topic><topic>Surface roughness</topic><topic>Surfaces and Interfaces</topic><topic>Thickness</topic><topic>Thin Films</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serrao, Felcy Jyothi</creatorcontrib><creatorcontrib>Sandeep, K. M.</creatorcontrib><creatorcontrib>Bhat, Shreesha</creatorcontrib><creatorcontrib>Dharmaprakash, S. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serrao, Felcy Jyothi</au><au>Sandeep, K. M.</au><au>Bhat, Shreesha</au><au>Dharmaprakash, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>124</volume><issue>3</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>224</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol–gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated. Electron irradiation influences the changes in the structural properties and surface morphology of GZO thin films. X-ray diffraction analysis showed that the polycrystalline nature of the GZO films is unaffected by the high energy electron irradiation. The grain size and the surface roughness were found maximum for the GZO film irradiated with 10 kGy electron dosage. The average transmittance of GZO thin films decreased after electron irradiation. The optical band gap of Ga-doped ZnO films was decreased with the increase in the electron dosage. The electrical resistivity of GZO films decreased from 4.83 × 10
−3
to 8.725 × 10
−4
Ω cm, when the electron dosage was increased from 0 to 10 kGy. The variation in the optical and electrical properties in the Ga-doped ZnO thin films due to electron beam irradiation in the present study is useful in deciding their compatibility in optoelectronic device applications in electron radiation environment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-018-1652-z</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2018-03, Vol.124 (3), p.1-7, Article 224 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2000296574 |
source | Springer Link |
subjects | Applied physics Characterization and Evaluation of Materials Coating effects Condensed Matter Physics Electrical properties Electron beams Electron irradiation Electron radiation Electrons Energy gap Gallium Machines Manufacturing Materials science Nanotechnology Optical and Electronic Materials Optical properties Optoelectronic devices Physics Physics and Astronomy Processes Radiation dosage Sol-gel processes Space applications Spin coating Surface roughness Surfaces and Interfaces Thickness Thin Films Zinc oxide |
title | High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20energy%20electron%20irradiation%20effects%20on%20Ga-doped%20ZnO%20thin%20films%20for%20optoelectronic%20space%20applications&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Serrao,%20Felcy%20Jyothi&rft.date=2018-03-01&rft.volume=124&rft.issue=3&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=224&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-018-1652-z&rft_dat=%3Cproquest_cross%3E2000296574%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-31d206e93a83c95b1445bca624055cdb98e0e2012d8e4bb17160854cafc3a0e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2000296574&rft_id=info:pmid/&rfr_iscdi=true |