Loading…

High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications

Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol–gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated....

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2018-03, Vol.124 (3), p.1-7, Article 224
Main Authors: Serrao, Felcy Jyothi, Sandeep, K. M., Bhat, Shreesha, Dharmaprakash, S. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-31d206e93a83c95b1445bca624055cdb98e0e2012d8e4bb17160854cafc3a0e93
cites cdi_FETCH-LOGICAL-c316t-31d206e93a83c95b1445bca624055cdb98e0e2012d8e4bb17160854cafc3a0e93
container_end_page 7
container_issue 3
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 124
creator Serrao, Felcy Jyothi
Sandeep, K. M.
Bhat, Shreesha
Dharmaprakash, S. M.
description Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol–gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated. Electron irradiation influences the changes in the structural properties and surface morphology of GZO thin films. X-ray diffraction analysis showed that the polycrystalline nature of the GZO films is unaffected by the high energy electron irradiation. The grain size and the surface roughness were found maximum for the GZO film irradiated with 10 kGy electron dosage. The average transmittance of GZO thin films decreased after electron irradiation. The optical band gap of Ga-doped ZnO films was decreased with the increase in the electron dosage. The electrical resistivity of GZO films decreased from 4.83 × 10 −3 to 8.725 × 10 −4  Ω cm, when the electron dosage was increased from 0 to 10 kGy. The variation in the optical and electrical properties in the Ga-doped ZnO thin films due to electron beam irradiation in the present study is useful in deciding their compatibility in optoelectronic device applications in electron radiation environment.
doi_str_mv 10.1007/s00339-018-1652-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2000296574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000296574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-31d206e93a83c95b1445bca624055cdb98e0e2012d8e4bb17160854cafc3a0e93</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgsMRvOf-IkI6qgRarUBRYWy3Gc1lUaBzsd2k-P24CYuOVOp_d7p3sI3VN4pAD5UwTgvCRAC0JlxsjxAk2o4IyA5HCJJlCKnBS8lNfoJsYtpBKMTZBbuPUG286G9QHb1poh-A67EHTt9ODSbJsmbSNO41yT2ve2xp_dCg8b1-HGtbuIGx-w7wf_yzuDY6-NxbrvW2fOPvEWXTW6jfbup0_Rx-vL-2xBlqv52-x5SQynciCc1gykLbkuuCmzigqRVUZLJiDLTF2VhQXLgLK6sKKqaE4lFJkwujFcQ-Km6GH07YP_2ts4qK3fhy6dVCx9zUqZ5SKp6KgywccYbKP64HY6HBQFdUpUjYmqlKg6JaqOiWEjE5O2W9vw5_w_9A2_b3pE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000296574</pqid></control><display><type>article</type><title>High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications</title><source>Springer Link</source><creator>Serrao, Felcy Jyothi ; Sandeep, K. M. ; Bhat, Shreesha ; Dharmaprakash, S. M.</creator><creatorcontrib>Serrao, Felcy Jyothi ; Sandeep, K. M. ; Bhat, Shreesha ; Dharmaprakash, S. M.</creatorcontrib><description>Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol–gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated. Electron irradiation influences the changes in the structural properties and surface morphology of GZO thin films. X-ray diffraction analysis showed that the polycrystalline nature of the GZO films is unaffected by the high energy electron irradiation. The grain size and the surface roughness were found maximum for the GZO film irradiated with 10 kGy electron dosage. The average transmittance of GZO thin films decreased after electron irradiation. The optical band gap of Ga-doped ZnO films was decreased with the increase in the electron dosage. The electrical resistivity of GZO films decreased from 4.83 × 10 −3 to 8.725 × 10 −4  Ω cm, when the electron dosage was increased from 0 to 10 kGy. The variation in the optical and electrical properties in the Ga-doped ZnO thin films due to electron beam irradiation in the present study is useful in deciding their compatibility in optoelectronic device applications in electron radiation environment.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-018-1652-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Characterization and Evaluation of Materials ; Coating effects ; Condensed Matter Physics ; Electrical properties ; Electron beams ; Electron irradiation ; Electron radiation ; Electrons ; Energy gap ; Gallium ; Machines ; Manufacturing ; Materials science ; Nanotechnology ; Optical and Electronic Materials ; Optical properties ; Optoelectronic devices ; Physics ; Physics and Astronomy ; Processes ; Radiation dosage ; Sol-gel processes ; Space applications ; Spin coating ; Surface roughness ; Surfaces and Interfaces ; Thickness ; Thin Films ; Zinc oxide</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2018-03, Vol.124 (3), p.1-7, Article 224</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-31d206e93a83c95b1445bca624055cdb98e0e2012d8e4bb17160854cafc3a0e93</citedby><cites>FETCH-LOGICAL-c316t-31d206e93a83c95b1445bca624055cdb98e0e2012d8e4bb17160854cafc3a0e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Serrao, Felcy Jyothi</creatorcontrib><creatorcontrib>Sandeep, K. M.</creatorcontrib><creatorcontrib>Bhat, Shreesha</creatorcontrib><creatorcontrib>Dharmaprakash, S. M.</creatorcontrib><title>High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol–gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated. Electron irradiation influences the changes in the structural properties and surface morphology of GZO thin films. X-ray diffraction analysis showed that the polycrystalline nature of the GZO films is unaffected by the high energy electron irradiation. The grain size and the surface roughness were found maximum for the GZO film irradiated with 10 kGy electron dosage. The average transmittance of GZO thin films decreased after electron irradiation. The optical band gap of Ga-doped ZnO films was decreased with the increase in the electron dosage. The electrical resistivity of GZO films decreased from 4.83 × 10 −3 to 8.725 × 10 −4  Ω cm, when the electron dosage was increased from 0 to 10 kGy. The variation in the optical and electrical properties in the Ga-doped ZnO thin films due to electron beam irradiation in the present study is useful in deciding their compatibility in optoelectronic device applications in electron radiation environment.</description><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Coating effects</subject><subject>Condensed Matter Physics</subject><subject>Electrical properties</subject><subject>Electron beams</subject><subject>Electron irradiation</subject><subject>Electron radiation</subject><subject>Electrons</subject><subject>Energy gap</subject><subject>Gallium</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Radiation dosage</subject><subject>Sol-gel processes</subject><subject>Space applications</subject><subject>Spin coating</subject><subject>Surface roughness</subject><subject>Surfaces and Interfaces</subject><subject>Thickness</subject><subject>Thin Films</subject><subject>Zinc oxide</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqXwAdgsMRvOf-IkI6qgRarUBRYWy3Gc1lUaBzsd2k-P24CYuOVOp_d7p3sI3VN4pAD5UwTgvCRAC0JlxsjxAk2o4IyA5HCJJlCKnBS8lNfoJsYtpBKMTZBbuPUG286G9QHb1poh-A67EHTt9ODSbJsmbSNO41yT2ve2xp_dCg8b1-HGtbuIGx-w7wf_yzuDY6-NxbrvW2fOPvEWXTW6jfbup0_Rx-vL-2xBlqv52-x5SQynciCc1gykLbkuuCmzigqRVUZLJiDLTF2VhQXLgLK6sKKqaE4lFJkwujFcQ-Km6GH07YP_2ts4qK3fhy6dVCx9zUqZ5SKp6KgywccYbKP64HY6HBQFdUpUjYmqlKg6JaqOiWEjE5O2W9vw5_w_9A2_b3pE</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Serrao, Felcy Jyothi</creator><creator>Sandeep, K. M.</creator><creator>Bhat, Shreesha</creator><creator>Dharmaprakash, S. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications</title><author>Serrao, Felcy Jyothi ; Sandeep, K. M. ; Bhat, Shreesha ; Dharmaprakash, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-31d206e93a83c95b1445bca624055cdb98e0e2012d8e4bb17160854cafc3a0e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Coating effects</topic><topic>Condensed Matter Physics</topic><topic>Electrical properties</topic><topic>Electron beams</topic><topic>Electron irradiation</topic><topic>Electron radiation</topic><topic>Electrons</topic><topic>Energy gap</topic><topic>Gallium</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Radiation dosage</topic><topic>Sol-gel processes</topic><topic>Space applications</topic><topic>Spin coating</topic><topic>Surface roughness</topic><topic>Surfaces and Interfaces</topic><topic>Thickness</topic><topic>Thin Films</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serrao, Felcy Jyothi</creatorcontrib><creatorcontrib>Sandeep, K. M.</creatorcontrib><creatorcontrib>Bhat, Shreesha</creatorcontrib><creatorcontrib>Dharmaprakash, S. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serrao, Felcy Jyothi</au><au>Sandeep, K. M.</au><au>Bhat, Shreesha</au><au>Dharmaprakash, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>124</volume><issue>3</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>224</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol–gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated. Electron irradiation influences the changes in the structural properties and surface morphology of GZO thin films. X-ray diffraction analysis showed that the polycrystalline nature of the GZO films is unaffected by the high energy electron irradiation. The grain size and the surface roughness were found maximum for the GZO film irradiated with 10 kGy electron dosage. The average transmittance of GZO thin films decreased after electron irradiation. The optical band gap of Ga-doped ZnO films was decreased with the increase in the electron dosage. The electrical resistivity of GZO films decreased from 4.83 × 10 −3 to 8.725 × 10 −4  Ω cm, when the electron dosage was increased from 0 to 10 kGy. The variation in the optical and electrical properties in the Ga-doped ZnO thin films due to electron beam irradiation in the present study is useful in deciding their compatibility in optoelectronic device applications in electron radiation environment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-018-1652-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2018-03, Vol.124 (3), p.1-7, Article 224
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2000296574
source Springer Link
subjects Applied physics
Characterization and Evaluation of Materials
Coating effects
Condensed Matter Physics
Electrical properties
Electron beams
Electron irradiation
Electron radiation
Electrons
Energy gap
Gallium
Machines
Manufacturing
Materials science
Nanotechnology
Optical and Electronic Materials
Optical properties
Optoelectronic devices
Physics
Physics and Astronomy
Processes
Radiation dosage
Sol-gel processes
Space applications
Spin coating
Surface roughness
Surfaces and Interfaces
Thickness
Thin Films
Zinc oxide
title High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20energy%20electron%20irradiation%20effects%20on%20Ga-doped%20ZnO%20thin%20films%20for%20optoelectronic%20space%20applications&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Serrao,%20Felcy%20Jyothi&rft.date=2018-03-01&rft.volume=124&rft.issue=3&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=224&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-018-1652-z&rft_dat=%3Cproquest_cross%3E2000296574%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-31d206e93a83c95b1445bca624055cdb98e0e2012d8e4bb17160854cafc3a0e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2000296574&rft_id=info:pmid/&rfr_iscdi=true