Loading…
Shimmy model for electric vehicle with independent suspensions
A 5-degrees-of-freedom shimmy model is established to analyse the dynamic responses of an electric vehicle with independent suspensions. Tyre elasticity is considered by means of Pacejka’s magic formula. Under the nonslip assumption for the leading contact point, tyre–road constraint equations are d...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2018-02, Vol.232 (3), p.330-340 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A 5-degrees-of-freedom shimmy model is established to analyse the dynamic responses of an electric vehicle with independent suspensions. Tyre elasticity is considered by means of Pacejka’s magic formula. Under the nonslip assumption for the leading contact point, tyre–road constraint equations are derived. Numerical simulation is conducted with different structural parameters and initial conditions to observe the shimmy phenomenon. Simulation results indicate that Hopf bifurcation occurs at a certain vehicle forward speed. Moreover, suspension structural parameters, such as caster angle, affect wheel shimmy. The linearized model of the system presents the stability boundaries, which agree with the simulation results. The results of this study not only provide a theoretical reference for shimmy attenuation, but also validate the effectiveness of the provided model, which can be used in further dynamic analysis of vehicle shimmy. |
---|---|
ISSN: | 0954-4070 2041-2991 |
DOI: | 10.1177/0954407017701282 |