Loading…
Zero-static-power nonvolatile logic-in-memory circuits for flexible electronics
Flexible logic circuits and memory with ultra-low static power consumption are in great demand for battery-powered flexible electronic systems. Here, we show that a flexible nonvolatile logic-in-memory circuit enabling normally-off computing can be implemented using a poly(1,3,5-trivinyl-l,3,5-trime...
Saved in:
Published in: | Nano research 2017-07, Vol.10 (7), p.2459-2470 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Flexible logic circuits and memory with ultra-low static power consumption are in great demand for battery-powered flexible electronic systems. Here, we show that a flexible nonvolatile logic-in-memory circuit enabling normally-off computing can be implemented using a poly(1,3,5-trivinyl-l,3,5-trimethyl cyclotrisiloxane) (pV3D3)-based memristor array. Although memristive logic-in-memory circuits have been previously reported, the requirements of additional components and the large variation of memristors have limited demonstrations to simple gates within a few operation cycles on rigid substrates only. Using memristor-aided logic (MAGIC) architecture requiring only memristors and pV3D3-memristor with good uniformity on a flexible substrate, for the first time, we experimentally demonstrated our implementation of MAGIC-NOT and -NOR gates during multiple cycles and even under bent conditions. Other functions, such as OR, AND, NAND, and a half adder, are also realized by combinations of NOT and NOR gates within a crossbar array. This research advances the development of novel computing architecture with zero static power consumption for battery- powered flexible electronic systems. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-017-1449-y |