Loading…

An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties

An efficient, controllable, and facile two-step synthetic strategy to prepare graphene-based nanocomposites is proposed. A series of Fe3O4-decorated reduced graphene oxide (Fe3O4@RGO) nanocomposites incorporating Fe3O4 nanocrystals of various sizes were prepared by an ethanothermal method using grap...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2017-10, Vol.10 (10), p.3303-3313
Main Authors: Lian, Chao, Wang, Zhuo, Lin, Rui, Wang, Dingsheng, Chen, Chen, Li, Yadong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-75af0d329940fdacd1eb1e4391d1e0980b415e088d4c0f1598566c913a6c59d53
cites cdi_FETCH-LOGICAL-c343t-75af0d329940fdacd1eb1e4391d1e0980b415e088d4c0f1598566c913a6c59d53
container_end_page 3313
container_issue 10
container_start_page 3303
container_title Nano research
container_volume 10
creator Lian, Chao
Wang, Zhuo
Lin, Rui
Wang, Dingsheng
Chen, Chen
Li, Yadong
description An efficient, controllable, and facile two-step synthetic strategy to prepare graphene-based nanocomposites is proposed. A series of Fe3O4-decorated reduced graphene oxide (Fe3O4@RGO) nanocomposites incorporating Fe3O4 nanocrystals of various sizes were prepared by an ethanothermal method using graphene oxide (GO) and monodisperse Fe3O4 nanocrystals with diameters ranging from 4 to 10 nm. The morphologies and microstructures of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, nitrogen adsorption measurements, and transmission electron microscopy. The results show that GO can be reduced to graphene during the ethanothermal process, and that the Fe3O4 nanocrystals are well dispersed on the graphene sheets generated in the process. The analysis of the electrochemical properties of the Fe3O4@RGO materials shows that nanocomposites prepared with Fe3O4 nanocrystals of different sizes exhibit different electrochemical performances. Among all samples, FegO4@RGO prepared with Fe3O4 nanocrystals of 6 nm diameter possessed the highest specific capacitance of 481 F/g at 1 A/g, highlighting the excellent capability of this material. This work illustrates a promising route to develop graphene-based nanocomposite materials with a wide range of potential applications.
doi_str_mv 10.1007/s12274-017-1543-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001470659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673128227</cqvip_id><sourcerecordid>2001470659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-75af0d329940fdacd1eb1e4391d1e0980b415e088d4c0f1598566c913a6c59d53</originalsourceid><addsrcrecordid>eNp9kUFu1DAYhSMEEqVwAHYWbAn4j53E3lFVbUGqNFLVri2P82fGVWqn_j1UcxVOwCG4E1fAo7Swqzf_k_Xe-xavqt4D_wyc918ImqaXNYe-hlaKWr2ojkBrVfPyXj5paOTr6g3RLeddA1IdVb9OAsNx9M5jyE_3E3Mx5BSnya4nZDYMbLTOF5kfYk0ZZ0b7kLdInhjlZDNu9n9-_2TnKFby69XFqhTczZF8RmIPPm_ZD5t83NHiYMGGONuUvZuK4dBfynxitJsxOTsXWLbBIZtTLD_ZI72tXo12Inz3eI-rm_Oz69Nv9eXq4vvpyWXthBS57ls78kE0Wks-DtYNgGtAKTQUxbXiawktcqUG6fgIrVZt1zkNwnau1UMrjquPS29B3--QsrmNuxQK0jScg-x51-rigsXlUiRKOJo5-Tub9ga4OQxilkFMGcQcBjGqZJolQ8UbNpj-Nz8X-vAI2sawuS-5f6SuF9CoEhB_AYkFnaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001470659</pqid></control><display><type>article</type><title>An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties</title><source>Springer Nature</source><creator>Lian, Chao ; Wang, Zhuo ; Lin, Rui ; Wang, Dingsheng ; Chen, Chen ; Li, Yadong</creator><creatorcontrib>Lian, Chao ; Wang, Zhuo ; Lin, Rui ; Wang, Dingsheng ; Chen, Chen ; Li, Yadong</creatorcontrib><description>An efficient, controllable, and facile two-step synthetic strategy to prepare graphene-based nanocomposites is proposed. A series of Fe3O4-decorated reduced graphene oxide (Fe3O4@RGO) nanocomposites incorporating Fe3O4 nanocrystals of various sizes were prepared by an ethanothermal method using graphene oxide (GO) and monodisperse Fe3O4 nanocrystals with diameters ranging from 4 to 10 nm. The morphologies and microstructures of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, nitrogen adsorption measurements, and transmission electron microscopy. The results show that GO can be reduced to graphene during the ethanothermal process, and that the Fe3O4 nanocrystals are well dispersed on the graphene sheets generated in the process. The analysis of the electrochemical properties of the Fe3O4@RGO materials shows that nanocomposites prepared with Fe3O4 nanocrystals of different sizes exhibit different electrochemical performances. Among all samples, FegO4@RGO prepared with Fe3O4 nanocrystals of 6 nm diameter possessed the highest specific capacitance of 481 F/g at 1 A/g, highlighting the excellent capability of this material. This work illustrates a promising route to develop graphene-based nanocomposite materials with a wide range of potential applications.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1543-8</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Capacitance ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystals ; Electrochemical analysis ; Electrochemistry ; Electron microscopy ; Graphene ; Iron oxides ; Materials Science ; Nanocomposites ; Nanocrystals ; Nanoparticles ; Nanotechnology ; Raman spectroscopy ; Research Article ; Transmission electron microscopy ; X-ray diffraction ; 两步合成 ; 可控性 ; 四氧化三铁 ; 氧化石墨 ; 电容性能 ; 简便 ; 纳米Fe3O4 ; 纳米复合材料</subject><ispartof>Nano research, 2017-10, Vol.10 (10), p.3303-3313</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Nano Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-75af0d329940fdacd1eb1e4391d1e0980b415e088d4c0f1598566c913a6c59d53</citedby><cites>FETCH-LOGICAL-c343t-75af0d329940fdacd1eb1e4391d1e0980b415e088d4c0f1598566c913a6c59d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lian, Chao</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Lin, Rui</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Li, Yadong</creatorcontrib><title>An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>An efficient, controllable, and facile two-step synthetic strategy to prepare graphene-based nanocomposites is proposed. A series of Fe3O4-decorated reduced graphene oxide (Fe3O4@RGO) nanocomposites incorporating Fe3O4 nanocrystals of various sizes were prepared by an ethanothermal method using graphene oxide (GO) and monodisperse Fe3O4 nanocrystals with diameters ranging from 4 to 10 nm. The morphologies and microstructures of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, nitrogen adsorption measurements, and transmission electron microscopy. The results show that GO can be reduced to graphene during the ethanothermal process, and that the Fe3O4 nanocrystals are well dispersed on the graphene sheets generated in the process. The analysis of the electrochemical properties of the Fe3O4@RGO materials shows that nanocomposites prepared with Fe3O4 nanocrystals of different sizes exhibit different electrochemical performances. Among all samples, FegO4@RGO prepared with Fe3O4 nanocrystals of 6 nm diameter possessed the highest specific capacitance of 481 F/g at 1 A/g, highlighting the excellent capability of this material. This work illustrates a promising route to develop graphene-based nanocomposite materials with a wide range of potential applications.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Capacitance</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electron microscopy</subject><subject>Graphene</subject><subject>Iron oxides</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Raman spectroscopy</subject><subject>Research Article</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><subject>两步合成</subject><subject>可控性</subject><subject>四氧化三铁</subject><subject>氧化石墨</subject><subject>电容性能</subject><subject>简便</subject><subject>纳米Fe3O4</subject><subject>纳米复合材料</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUFu1DAYhSMEEqVwAHYWbAn4j53E3lFVbUGqNFLVri2P82fGVWqn_j1UcxVOwCG4E1fAo7Swqzf_k_Xe-xavqt4D_wyc918ImqaXNYe-hlaKWr2ojkBrVfPyXj5paOTr6g3RLeddA1IdVb9OAsNx9M5jyE_3E3Mx5BSnya4nZDYMbLTOF5kfYk0ZZ0b7kLdInhjlZDNu9n9-_2TnKFby69XFqhTczZF8RmIPPm_ZD5t83NHiYMGGONuUvZuK4dBfynxitJsxOTsXWLbBIZtTLD_ZI72tXo12Inz3eI-rm_Oz69Nv9eXq4vvpyWXthBS57ls78kE0Wks-DtYNgGtAKTQUxbXiawktcqUG6fgIrVZt1zkNwnau1UMrjquPS29B3--QsrmNuxQK0jScg-x51-rigsXlUiRKOJo5-Tub9ga4OQxilkFMGcQcBjGqZJolQ8UbNpj-Nz8X-vAI2sawuS-5f6SuF9CoEhB_AYkFnaY</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Lian, Chao</creator><creator>Wang, Zhuo</creator><creator>Lin, Rui</creator><creator>Wang, Dingsheng</creator><creator>Chen, Chen</creator><creator>Li, Yadong</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20171001</creationdate><title>An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties</title><author>Lian, Chao ; Wang, Zhuo ; Lin, Rui ; Wang, Dingsheng ; Chen, Chen ; Li, Yadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-75af0d329940fdacd1eb1e4391d1e0980b415e088d4c0f1598566c913a6c59d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Capacitance</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electron microscopy</topic><topic>Graphene</topic><topic>Iron oxides</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Raman spectroscopy</topic><topic>Research Article</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><topic>两步合成</topic><topic>可控性</topic><topic>四氧化三铁</topic><topic>氧化石墨</topic><topic>电容性能</topic><topic>简便</topic><topic>纳米Fe3O4</topic><topic>纳米复合材料</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lian, Chao</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Lin, Rui</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Li, Yadong</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lian, Chao</au><au>Wang, Zhuo</au><au>Lin, Rui</au><au>Wang, Dingsheng</au><au>Chen, Chen</au><au>Li, Yadong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>10</volume><issue>10</issue><spage>3303</spage><epage>3313</epage><pages>3303-3313</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>An efficient, controllable, and facile two-step synthetic strategy to prepare graphene-based nanocomposites is proposed. A series of Fe3O4-decorated reduced graphene oxide (Fe3O4@RGO) nanocomposites incorporating Fe3O4 nanocrystals of various sizes were prepared by an ethanothermal method using graphene oxide (GO) and monodisperse Fe3O4 nanocrystals with diameters ranging from 4 to 10 nm. The morphologies and microstructures of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, nitrogen adsorption measurements, and transmission electron microscopy. The results show that GO can be reduced to graphene during the ethanothermal process, and that the Fe3O4 nanocrystals are well dispersed on the graphene sheets generated in the process. The analysis of the electrochemical properties of the Fe3O4@RGO materials shows that nanocomposites prepared with Fe3O4 nanocrystals of different sizes exhibit different electrochemical performances. Among all samples, FegO4@RGO prepared with Fe3O4 nanocrystals of 6 nm diameter possessed the highest specific capacitance of 481 F/g at 1 A/g, highlighting the excellent capability of this material. This work illustrates a promising route to develop graphene-based nanocomposite materials with a wide range of potential applications.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1543-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2017-10, Vol.10 (10), p.3303-3313
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2001470659
source Springer Nature
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Capacitance
Chemistry and Materials Science
Condensed Matter Physics
Crystals
Electrochemical analysis
Electrochemistry
Electron microscopy
Graphene
Iron oxides
Materials Science
Nanocomposites
Nanocrystals
Nanoparticles
Nanotechnology
Raman spectroscopy
Research Article
Transmission electron microscopy
X-ray diffraction
两步合成
可控性
四氧化三铁
氧化石墨
电容性能
简便
纳米Fe3O4
纳米复合材料
title An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficientfficient,%20controllable%20and%20facile%20two-step%20synthesis%20strategy%EF%BC%9A%20Fe3O4@RGO%20composites%20with%20various%20Fe3O4%20nanoparticles%20and%20their%20supercapacitance%20properties&rft.jtitle=Nano%20research&rft.au=Lian,%20Chao&rft.date=2017-10-01&rft.volume=10&rft.issue=10&rft.spage=3303&rft.epage=3313&rft.pages=3303-3313&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1543-8&rft_dat=%3Cproquest_cross%3E2001470659%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-75af0d329940fdacd1eb1e4391d1e0980b415e088d4c0f1598566c913a6c59d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2001470659&rft_id=info:pmid/&rft_cqvip_id=673128227&rfr_iscdi=true