Loading…

Pseudo-Riemannian Foliations and Their Graphs

We prove that a foliation ( M , F ) of codimension q on a n -dimensional pseudo-Riemannian manifold with induced metrics on leaves is pseudo-Riemannian if and only if any geodesic that is orthogonal at one point to a leaf is orthogonal to every leaf it intersects. We show that on the graph G = G ( F...

Full description

Saved in:
Bibliographic Details
Published in:Lobachevskii journal of mathematics 2018, Vol.39 (1), p.54-64
Main Authors: Dolgonosova, A. Yu, Zhukova, N. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-e8ab1064aeed7fdd81023bc345a7f6ce06604982e940fa2b1ee6199a83ad73ac3
cites cdi_FETCH-LOGICAL-c359t-e8ab1064aeed7fdd81023bc345a7f6ce06604982e940fa2b1ee6199a83ad73ac3
container_end_page 64
container_issue 1
container_start_page 54
container_title Lobachevskii journal of mathematics
container_volume 39
creator Dolgonosova, A. Yu
Zhukova, N. I.
description We prove that a foliation ( M , F ) of codimension q on a n -dimensional pseudo-Riemannian manifold with induced metrics on leaves is pseudo-Riemannian if and only if any geodesic that is orthogonal at one point to a leaf is orthogonal to every leaf it intersects. We show that on the graph G = G ( F ) of a pseudo-Riemannian foliation there exists a unique pseudo-Riemannian metric such that canonical projections are pseudo-Riemannian submersions and the fibers of different projections are orthogonal at common points. Relatively this metric the induced foliation ( G , F) on the graph is pseudo-Riemannian and the structure of the leaves of ( G , F) is described. Special attention is given to the structure of graphs of transversally (geodesically) complete pseudo-Riemannian foliations which are totally geodesic pseudo-Riemannian ones.
doi_str_mv 10.1134/S1995080218010092
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001478804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001478804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e8ab1064aeed7fdd81023bc345a7f6ce06604982e940fa2b1ee6199a83ad73ac3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuC5-hMkmaToxRbhYKi9bxMd2ftljZbk_bgvzelggfxNAPve2-GJ8Q1wi2iNndv6P0IHCh0gABenYgBOnTSe6tO855ledDPxUVKKwClrLUDIV8S75tevna8oRA6CsWkX3e06_qQCgpNMV9yF4tppO0yXYqzltaJr37mULxPHubjRzl7nj6N72ey1iO_k-xogWANMTdl2zQOQelFrc2IytbWDNaC8U6xN9CSWiCzzQ-S09SUmmo9FDfH3G3sP_ecdtWq38eQT1YKAE3pHJhM4ZGqY59S5Lbaxm5D8atCqA6tVH9ayR519KTMhg-Ov8n_m74BZAliSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001478804</pqid></control><display><type>article</type><title>Pseudo-Riemannian Foliations and Their Graphs</title><source>Springer Nature</source><creator>Dolgonosova, A. Yu ; Zhukova, N. I.</creator><creatorcontrib>Dolgonosova, A. Yu ; Zhukova, N. I.</creatorcontrib><description>We prove that a foliation ( M , F ) of codimension q on a n -dimensional pseudo-Riemannian manifold with induced metrics on leaves is pseudo-Riemannian if and only if any geodesic that is orthogonal at one point to a leaf is orthogonal to every leaf it intersects. We show that on the graph G = G ( F ) of a pseudo-Riemannian foliation there exists a unique pseudo-Riemannian metric such that canonical projections are pseudo-Riemannian submersions and the fibers of different projections are orthogonal at common points. Relatively this metric the induced foliation ( G , F) on the graph is pseudo-Riemannian and the structure of the leaves of ( G , F) is described. Special attention is given to the structure of graphs of transversally (geodesically) complete pseudo-Riemannian foliations which are totally geodesic pseudo-Riemannian ones.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080218010092</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Brownian motion ; Geometry ; Graphs ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Riemann manifold</subject><ispartof>Lobachevskii journal of mathematics, 2018, Vol.39 (1), p.54-64</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e8ab1064aeed7fdd81023bc345a7f6ce06604982e940fa2b1ee6199a83ad73ac3</citedby><cites>FETCH-LOGICAL-c359t-e8ab1064aeed7fdd81023bc345a7f6ce06604982e940fa2b1ee6199a83ad73ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dolgonosova, A. Yu</creatorcontrib><creatorcontrib>Zhukova, N. I.</creatorcontrib><title>Pseudo-Riemannian Foliations and Their Graphs</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We prove that a foliation ( M , F ) of codimension q on a n -dimensional pseudo-Riemannian manifold with induced metrics on leaves is pseudo-Riemannian if and only if any geodesic that is orthogonal at one point to a leaf is orthogonal to every leaf it intersects. We show that on the graph G = G ( F ) of a pseudo-Riemannian foliation there exists a unique pseudo-Riemannian metric such that canonical projections are pseudo-Riemannian submersions and the fibers of different projections are orthogonal at common points. Relatively this metric the induced foliation ( G , F) on the graph is pseudo-Riemannian and the structure of the leaves of ( G , F) is described. Special attention is given to the structure of graphs of transversally (geodesically) complete pseudo-Riemannian foliations which are totally geodesic pseudo-Riemannian ones.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Brownian motion</subject><subject>Geometry</subject><subject>Graphs</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Riemann manifold</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wNuC5-hMkmaToxRbhYKi9bxMd2ftljZbk_bgvzelggfxNAPve2-GJ8Q1wi2iNndv6P0IHCh0gABenYgBOnTSe6tO855ledDPxUVKKwClrLUDIV8S75tevna8oRA6CsWkX3e06_qQCgpNMV9yF4tppO0yXYqzltaJr37mULxPHubjRzl7nj6N72ey1iO_k-xogWANMTdl2zQOQelFrc2IytbWDNaC8U6xN9CSWiCzzQ-S09SUmmo9FDfH3G3sP_ecdtWq38eQT1YKAE3pHJhM4ZGqY59S5Lbaxm5D8atCqA6tVH9ayR519KTMhg-Ov8n_m74BZAliSg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Dolgonosova, A. Yu</creator><creator>Zhukova, N. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Pseudo-Riemannian Foliations and Their Graphs</title><author>Dolgonosova, A. Yu ; Zhukova, N. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e8ab1064aeed7fdd81023bc345a7f6ce06604982e940fa2b1ee6199a83ad73ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Brownian motion</topic><topic>Geometry</topic><topic>Graphs</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Riemann manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolgonosova, A. Yu</creatorcontrib><creatorcontrib>Zhukova, N. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolgonosova, A. Yu</au><au>Zhukova, N. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudo-Riemannian Foliations and Their Graphs</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2018</date><risdate>2018</risdate><volume>39</volume><issue>1</issue><spage>54</spage><epage>64</epage><pages>54-64</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We prove that a foliation ( M , F ) of codimension q on a n -dimensional pseudo-Riemannian manifold with induced metrics on leaves is pseudo-Riemannian if and only if any geodesic that is orthogonal at one point to a leaf is orthogonal to every leaf it intersects. We show that on the graph G = G ( F ) of a pseudo-Riemannian foliation there exists a unique pseudo-Riemannian metric such that canonical projections are pseudo-Riemannian submersions and the fibers of different projections are orthogonal at common points. Relatively this metric the induced foliation ( G , F) on the graph is pseudo-Riemannian and the structure of the leaves of ( G , F) is described. Special attention is given to the structure of graphs of transversally (geodesically) complete pseudo-Riemannian foliations which are totally geodesic pseudo-Riemannian ones.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080218010092</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2018, Vol.39 (1), p.54-64
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2001478804
source Springer Nature
subjects Algebra
Analysis
Brownian motion
Geometry
Graphs
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Riemann manifold
title Pseudo-Riemannian Foliations and Their Graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudo-Riemannian%20Foliations%20and%20Their%20Graphs&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Dolgonosova,%20A.%20Yu&rft.date=2018&rft.volume=39&rft.issue=1&rft.spage=54&rft.epage=64&rft.pages=54-64&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080218010092&rft_dat=%3Cproquest_cross%3E2001478804%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-e8ab1064aeed7fdd81023bc345a7f6ce06604982e940fa2b1ee6199a83ad73ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2001478804&rft_id=info:pmid/&rfr_iscdi=true