Loading…

Buoyancy shutdown process for the development of the baroclinic jet structure of the Soya Warm Current during summer

The Soya Warm Current (SWC), which is the coastal current along the northeastern part of Hokkaido, Japan, has a notable baroclinic jet structure during summer. This study addresses the formation mechanism of the baroclinic jet by analyzing a realistic numerical model and conducting its sensitivity e...

Full description

Saved in:
Bibliographic Details
Published in:Journal of oceanography 2018-08, Vol.74 (4), p.339-350
Main Authors: Karaki, Tatsuro, Mitsudera, Humio, Kuroda, Hiroshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-27caf1c2b41020440e27ebce3080516954b11c67c7c161b9030a3ed83b2f93c73
cites cdi_FETCH-LOGICAL-c452t-27caf1c2b41020440e27ebce3080516954b11c67c7c161b9030a3ed83b2f93c73
container_end_page 350
container_issue 4
container_start_page 339
container_title Journal of oceanography
container_volume 74
creator Karaki, Tatsuro
Mitsudera, Humio
Kuroda, Hiroshi
description The Soya Warm Current (SWC), which is the coastal current along the northeastern part of Hokkaido, Japan, has a notable baroclinic jet structure during summer. This study addresses the formation mechanism of the baroclinic jet by analyzing a realistic numerical model and conducting its sensitivity experiment. The key process is the interaction between the seasonal thermocline and the bottom Ekman layer on the slope off the northeastern coast of Hokkaido; the bottom Ekman transport causes subduction of the warm seasonal thermocline water below the cold lower-layer water, so the bottom mixed layer develops with a remarkable cross-isobath density gradient. Consequently, the buoyancy transport vanishes as a result of the thermal wind balance in the mixed layer. The SWC area is divided into two regions during summer: upstream, the adjustment toward the buoyancy shutdown is in progress; downstream, the buoyancy shutdown occurs. The buoyancy shutdown theory assesses the bottom-mixed-layer thickness to be 50 m, consistent with observations and our numerical results. The seasonal thermocline from June to September is strong enough to establish the dominance of the buoyancy shutdown process over the frictional spindown.
doi_str_mv 10.1007/s10872-018-0465-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001506830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001506830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-27caf1c2b41020440e27ebce3080516954b11c67c7c161b9030a3ed83b2f93c73</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7-Ad4CnqMzSdukR138ggUPKnoLbZq6Xbbtmg9l_3tbq3jyNDDzfm94j5BThHMEkBceQUnOABWDJEsZ7pEZplIwlanXfTKDHDOmhIRDcuT9GgByJcWMhKvY74rO7KhfxVD1nx3dut5Y72ndOxpWllb2w276bWu7QPv6e1UWg2bTdI2haxuoDy6aEJ39vT8OnvSlcC1dROdGsIqu6d6oj21r3TE5qIuNtyc_c06eb66fFnds-XB7v7hcMpOkPDAuTVGj4WWCwCFJwHJpS2MFKEgxy9OkRDSZNNJghmUOAgphKyVKXufCSDEnZ5PvEOk9Wh_0uo-uG15qDoApZErAoMJJZVzvvbO13rqmLdxOI-ixXD2Vq4dy9ViuxoHhE-O3Yy7r_pz_h74AMCl9qA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001506830</pqid></control><display><type>article</type><title>Buoyancy shutdown process for the development of the baroclinic jet structure of the Soya Warm Current during summer</title><source>Springer Link</source><creator>Karaki, Tatsuro ; Mitsudera, Humio ; Kuroda, Hiroshi</creator><creatorcontrib>Karaki, Tatsuro ; Mitsudera, Humio ; Kuroda, Hiroshi</creatorcontrib><description>The Soya Warm Current (SWC), which is the coastal current along the northeastern part of Hokkaido, Japan, has a notable baroclinic jet structure during summer. This study addresses the formation mechanism of the baroclinic jet by analyzing a realistic numerical model and conducting its sensitivity experiment. The key process is the interaction between the seasonal thermocline and the bottom Ekman layer on the slope off the northeastern coast of Hokkaido; the bottom Ekman transport causes subduction of the warm seasonal thermocline water below the cold lower-layer water, so the bottom mixed layer develops with a remarkable cross-isobath density gradient. Consequently, the buoyancy transport vanishes as a result of the thermal wind balance in the mixed layer. The SWC area is divided into two regions during summer: upstream, the adjustment toward the buoyancy shutdown is in progress; downstream, the buoyancy shutdown occurs. The buoyancy shutdown theory assesses the bottom-mixed-layer thickness to be 50 m, consistent with observations and our numerical results. The seasonal thermocline from June to September is strong enough to establish the dominance of the buoyancy shutdown process over the frictional spindown.</description><identifier>ISSN: 0916-8370</identifier><identifier>EISSN: 1573-868X</identifier><identifier>DOI: 10.1007/s10872-018-0465-1</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Bottom Ekman layer ; Bottom mixed layer ; Buoyancy ; Coastal currents ; Density gradients ; Earth and Environmental Science ; Earth Sciences ; Ekman layer ; Ekman transport ; Freshwater &amp; Marine Ecology ; Isobaths ; Mathematical models ; Metalimnion ; Mixed layer ; Oceanography ; Original Article ; Seasonal thermocline ; Sensitivity analysis ; Shutdowns ; Subduction ; Summer ; Thermocline ; Thickness ; Transport</subject><ispartof>Journal of oceanography, 2018-08, Vol.74 (4), p.339-350</ispartof><rights>The Author(s) 2018</rights><rights>Journal of Oceanography is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-27caf1c2b41020440e27ebce3080516954b11c67c7c161b9030a3ed83b2f93c73</citedby><cites>FETCH-LOGICAL-c452t-27caf1c2b41020440e27ebce3080516954b11c67c7c161b9030a3ed83b2f93c73</cites><orcidid>0000-0002-9153-2621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Karaki, Tatsuro</creatorcontrib><creatorcontrib>Mitsudera, Humio</creatorcontrib><creatorcontrib>Kuroda, Hiroshi</creatorcontrib><title>Buoyancy shutdown process for the development of the baroclinic jet structure of the Soya Warm Current during summer</title><title>Journal of oceanography</title><addtitle>J Oceanogr</addtitle><description>The Soya Warm Current (SWC), which is the coastal current along the northeastern part of Hokkaido, Japan, has a notable baroclinic jet structure during summer. This study addresses the formation mechanism of the baroclinic jet by analyzing a realistic numerical model and conducting its sensitivity experiment. The key process is the interaction between the seasonal thermocline and the bottom Ekman layer on the slope off the northeastern coast of Hokkaido; the bottom Ekman transport causes subduction of the warm seasonal thermocline water below the cold lower-layer water, so the bottom mixed layer develops with a remarkable cross-isobath density gradient. Consequently, the buoyancy transport vanishes as a result of the thermal wind balance in the mixed layer. The SWC area is divided into two regions during summer: upstream, the adjustment toward the buoyancy shutdown is in progress; downstream, the buoyancy shutdown occurs. The buoyancy shutdown theory assesses the bottom-mixed-layer thickness to be 50 m, consistent with observations and our numerical results. The seasonal thermocline from June to September is strong enough to establish the dominance of the buoyancy shutdown process over the frictional spindown.</description><subject>Bottom Ekman layer</subject><subject>Bottom mixed layer</subject><subject>Buoyancy</subject><subject>Coastal currents</subject><subject>Density gradients</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ekman layer</subject><subject>Ekman transport</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Isobaths</subject><subject>Mathematical models</subject><subject>Metalimnion</subject><subject>Mixed layer</subject><subject>Oceanography</subject><subject>Original Article</subject><subject>Seasonal thermocline</subject><subject>Sensitivity analysis</subject><subject>Shutdowns</subject><subject>Subduction</subject><subject>Summer</subject><subject>Thermocline</subject><subject>Thickness</subject><subject>Transport</subject><issn>0916-8370</issn><issn>1573-868X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7-Ad4CnqMzSdukR138ggUPKnoLbZq6Xbbtmg9l_3tbq3jyNDDzfm94j5BThHMEkBceQUnOABWDJEsZ7pEZplIwlanXfTKDHDOmhIRDcuT9GgByJcWMhKvY74rO7KhfxVD1nx3dut5Y72ndOxpWllb2w276bWu7QPv6e1UWg2bTdI2haxuoDy6aEJ39vT8OnvSlcC1dROdGsIqu6d6oj21r3TE5qIuNtyc_c06eb66fFnds-XB7v7hcMpOkPDAuTVGj4WWCwCFJwHJpS2MFKEgxy9OkRDSZNNJghmUOAgphKyVKXufCSDEnZ5PvEOk9Wh_0uo-uG15qDoApZErAoMJJZVzvvbO13rqmLdxOI-ixXD2Vq4dy9ViuxoHhE-O3Yy7r_pz_h74AMCl9qA</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Karaki, Tatsuro</creator><creator>Mitsudera, Humio</creator><creator>Kuroda, Hiroshi</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9153-2621</orcidid></search><sort><creationdate>20180801</creationdate><title>Buoyancy shutdown process for the development of the baroclinic jet structure of the Soya Warm Current during summer</title><author>Karaki, Tatsuro ; Mitsudera, Humio ; Kuroda, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-27caf1c2b41020440e27ebce3080516954b11c67c7c161b9030a3ed83b2f93c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bottom Ekman layer</topic><topic>Bottom mixed layer</topic><topic>Buoyancy</topic><topic>Coastal currents</topic><topic>Density gradients</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ekman layer</topic><topic>Ekman transport</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Isobaths</topic><topic>Mathematical models</topic><topic>Metalimnion</topic><topic>Mixed layer</topic><topic>Oceanography</topic><topic>Original Article</topic><topic>Seasonal thermocline</topic><topic>Sensitivity analysis</topic><topic>Shutdowns</topic><topic>Subduction</topic><topic>Summer</topic><topic>Thermocline</topic><topic>Thickness</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karaki, Tatsuro</creatorcontrib><creatorcontrib>Mitsudera, Humio</creatorcontrib><creatorcontrib>Kuroda, Hiroshi</creatorcontrib><collection>Springer</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database (ProQuest)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karaki, Tatsuro</au><au>Mitsudera, Humio</au><au>Kuroda, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buoyancy shutdown process for the development of the baroclinic jet structure of the Soya Warm Current during summer</atitle><jtitle>Journal of oceanography</jtitle><stitle>J Oceanogr</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>74</volume><issue>4</issue><spage>339</spage><epage>350</epage><pages>339-350</pages><issn>0916-8370</issn><eissn>1573-868X</eissn><abstract>The Soya Warm Current (SWC), which is the coastal current along the northeastern part of Hokkaido, Japan, has a notable baroclinic jet structure during summer. This study addresses the formation mechanism of the baroclinic jet by analyzing a realistic numerical model and conducting its sensitivity experiment. The key process is the interaction between the seasonal thermocline and the bottom Ekman layer on the slope off the northeastern coast of Hokkaido; the bottom Ekman transport causes subduction of the warm seasonal thermocline water below the cold lower-layer water, so the bottom mixed layer develops with a remarkable cross-isobath density gradient. Consequently, the buoyancy transport vanishes as a result of the thermal wind balance in the mixed layer. The SWC area is divided into two regions during summer: upstream, the adjustment toward the buoyancy shutdown is in progress; downstream, the buoyancy shutdown occurs. The buoyancy shutdown theory assesses the bottom-mixed-layer thickness to be 50 m, consistent with observations and our numerical results. The seasonal thermocline from June to September is strong enough to establish the dominance of the buoyancy shutdown process over the frictional spindown.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10872-018-0465-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9153-2621</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8370
ispartof Journal of oceanography, 2018-08, Vol.74 (4), p.339-350
issn 0916-8370
1573-868X
language eng
recordid cdi_proquest_journals_2001506830
source Springer Link
subjects Bottom Ekman layer
Bottom mixed layer
Buoyancy
Coastal currents
Density gradients
Earth and Environmental Science
Earth Sciences
Ekman layer
Ekman transport
Freshwater & Marine Ecology
Isobaths
Mathematical models
Metalimnion
Mixed layer
Oceanography
Original Article
Seasonal thermocline
Sensitivity analysis
Shutdowns
Subduction
Summer
Thermocline
Thickness
Transport
title Buoyancy shutdown process for the development of the baroclinic jet structure of the Soya Warm Current during summer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buoyancy%20shutdown%20process%20for%20the%20development%20of%20the%20baroclinic%20jet%20structure%20of%20the%20Soya%20Warm%20Current%20during%20summer&rft.jtitle=Journal%20of%20oceanography&rft.au=Karaki,%20Tatsuro&rft.date=2018-08-01&rft.volume=74&rft.issue=4&rft.spage=339&rft.epage=350&rft.pages=339-350&rft.issn=0916-8370&rft.eissn=1573-868X&rft_id=info:doi/10.1007/s10872-018-0465-1&rft_dat=%3Cproquest_cross%3E2001506830%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-27caf1c2b41020440e27ebce3080516954b11c67c7c161b9030a3ed83b2f93c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2001506830&rft_id=info:pmid/&rfr_iscdi=true