Loading…
Buoyancy shutdown process for the development of the baroclinic jet structure of the Soya Warm Current during summer
The Soya Warm Current (SWC), which is the coastal current along the northeastern part of Hokkaido, Japan, has a notable baroclinic jet structure during summer. This study addresses the formation mechanism of the baroclinic jet by analyzing a realistic numerical model and conducting its sensitivity e...
Saved in:
Published in: | Journal of oceanography 2018-08, Vol.74 (4), p.339-350 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-27caf1c2b41020440e27ebce3080516954b11c67c7c161b9030a3ed83b2f93c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-27caf1c2b41020440e27ebce3080516954b11c67c7c161b9030a3ed83b2f93c73 |
container_end_page | 350 |
container_issue | 4 |
container_start_page | 339 |
container_title | Journal of oceanography |
container_volume | 74 |
creator | Karaki, Tatsuro Mitsudera, Humio Kuroda, Hiroshi |
description | The Soya Warm Current (SWC), which is the coastal current along the northeastern part of Hokkaido, Japan, has a notable baroclinic jet structure during summer. This study addresses the formation mechanism of the baroclinic jet by analyzing a realistic numerical model and conducting its sensitivity experiment. The key process is the interaction between the seasonal thermocline and the bottom Ekman layer on the slope off the northeastern coast of Hokkaido; the bottom Ekman transport causes subduction of the warm seasonal thermocline water below the cold lower-layer water, so the bottom mixed layer develops with a remarkable cross-isobath density gradient. Consequently, the buoyancy transport vanishes as a result of the thermal wind balance in the mixed layer. The SWC area is divided into two regions during summer: upstream, the adjustment toward the buoyancy shutdown is in progress; downstream, the buoyancy shutdown occurs. The buoyancy shutdown theory assesses the bottom-mixed-layer thickness to be 50 m, consistent with observations and our numerical results. The seasonal thermocline from June to September is strong enough to establish the dominance of the buoyancy shutdown process over the frictional spindown. |
doi_str_mv | 10.1007/s10872-018-0465-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001506830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001506830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-27caf1c2b41020440e27ebce3080516954b11c67c7c161b9030a3ed83b2f93c73</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7-Ad4CnqMzSdukR138ggUPKnoLbZq6Xbbtmg9l_3tbq3jyNDDzfm94j5BThHMEkBceQUnOABWDJEsZ7pEZplIwlanXfTKDHDOmhIRDcuT9GgByJcWMhKvY74rO7KhfxVD1nx3dut5Y72ndOxpWllb2w276bWu7QPv6e1UWg2bTdI2haxuoDy6aEJ39vT8OnvSlcC1dROdGsIqu6d6oj21r3TE5qIuNtyc_c06eb66fFnds-XB7v7hcMpOkPDAuTVGj4WWCwCFJwHJpS2MFKEgxy9OkRDSZNNJghmUOAgphKyVKXufCSDEnZ5PvEOk9Wh_0uo-uG15qDoApZErAoMJJZVzvvbO13rqmLdxOI-ixXD2Vq4dy9ViuxoHhE-O3Yy7r_pz_h74AMCl9qA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001506830</pqid></control><display><type>article</type><title>Buoyancy shutdown process for the development of the baroclinic jet structure of the Soya Warm Current during summer</title><source>Springer Link</source><creator>Karaki, Tatsuro ; Mitsudera, Humio ; Kuroda, Hiroshi</creator><creatorcontrib>Karaki, Tatsuro ; Mitsudera, Humio ; Kuroda, Hiroshi</creatorcontrib><description>The Soya Warm Current (SWC), which is the coastal current along the northeastern part of Hokkaido, Japan, has a notable baroclinic jet structure during summer. This study addresses the formation mechanism of the baroclinic jet by analyzing a realistic numerical model and conducting its sensitivity experiment. The key process is the interaction between the seasonal thermocline and the bottom Ekman layer on the slope off the northeastern coast of Hokkaido; the bottom Ekman transport causes subduction of the warm seasonal thermocline water below the cold lower-layer water, so the bottom mixed layer develops with a remarkable cross-isobath density gradient. Consequently, the buoyancy transport vanishes as a result of the thermal wind balance in the mixed layer. The SWC area is divided into two regions during summer: upstream, the adjustment toward the buoyancy shutdown is in progress; downstream, the buoyancy shutdown occurs. The buoyancy shutdown theory assesses the bottom-mixed-layer thickness to be 50 m, consistent with observations and our numerical results. The seasonal thermocline from June to September is strong enough to establish the dominance of the buoyancy shutdown process over the frictional spindown.</description><identifier>ISSN: 0916-8370</identifier><identifier>EISSN: 1573-868X</identifier><identifier>DOI: 10.1007/s10872-018-0465-1</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Bottom Ekman layer ; Bottom mixed layer ; Buoyancy ; Coastal currents ; Density gradients ; Earth and Environmental Science ; Earth Sciences ; Ekman layer ; Ekman transport ; Freshwater & Marine Ecology ; Isobaths ; Mathematical models ; Metalimnion ; Mixed layer ; Oceanography ; Original Article ; Seasonal thermocline ; Sensitivity analysis ; Shutdowns ; Subduction ; Summer ; Thermocline ; Thickness ; Transport</subject><ispartof>Journal of oceanography, 2018-08, Vol.74 (4), p.339-350</ispartof><rights>The Author(s) 2018</rights><rights>Journal of Oceanography is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-27caf1c2b41020440e27ebce3080516954b11c67c7c161b9030a3ed83b2f93c73</citedby><cites>FETCH-LOGICAL-c452t-27caf1c2b41020440e27ebce3080516954b11c67c7c161b9030a3ed83b2f93c73</cites><orcidid>0000-0002-9153-2621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Karaki, Tatsuro</creatorcontrib><creatorcontrib>Mitsudera, Humio</creatorcontrib><creatorcontrib>Kuroda, Hiroshi</creatorcontrib><title>Buoyancy shutdown process for the development of the baroclinic jet structure of the Soya Warm Current during summer</title><title>Journal of oceanography</title><addtitle>J Oceanogr</addtitle><description>The Soya Warm Current (SWC), which is the coastal current along the northeastern part of Hokkaido, Japan, has a notable baroclinic jet structure during summer. This study addresses the formation mechanism of the baroclinic jet by analyzing a realistic numerical model and conducting its sensitivity experiment. The key process is the interaction between the seasonal thermocline and the bottom Ekman layer on the slope off the northeastern coast of Hokkaido; the bottom Ekman transport causes subduction of the warm seasonal thermocline water below the cold lower-layer water, so the bottom mixed layer develops with a remarkable cross-isobath density gradient. Consequently, the buoyancy transport vanishes as a result of the thermal wind balance in the mixed layer. The SWC area is divided into two regions during summer: upstream, the adjustment toward the buoyancy shutdown is in progress; downstream, the buoyancy shutdown occurs. The buoyancy shutdown theory assesses the bottom-mixed-layer thickness to be 50 m, consistent with observations and our numerical results. The seasonal thermocline from June to September is strong enough to establish the dominance of the buoyancy shutdown process over the frictional spindown.</description><subject>Bottom Ekman layer</subject><subject>Bottom mixed layer</subject><subject>Buoyancy</subject><subject>Coastal currents</subject><subject>Density gradients</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ekman layer</subject><subject>Ekman transport</subject><subject>Freshwater & Marine Ecology</subject><subject>Isobaths</subject><subject>Mathematical models</subject><subject>Metalimnion</subject><subject>Mixed layer</subject><subject>Oceanography</subject><subject>Original Article</subject><subject>Seasonal thermocline</subject><subject>Sensitivity analysis</subject><subject>Shutdowns</subject><subject>Subduction</subject><subject>Summer</subject><subject>Thermocline</subject><subject>Thickness</subject><subject>Transport</subject><issn>0916-8370</issn><issn>1573-868X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7-Ad4CnqMzSdukR138ggUPKnoLbZq6Xbbtmg9l_3tbq3jyNDDzfm94j5BThHMEkBceQUnOABWDJEsZ7pEZplIwlanXfTKDHDOmhIRDcuT9GgByJcWMhKvY74rO7KhfxVD1nx3dut5Y72ndOxpWllb2w276bWu7QPv6e1UWg2bTdI2haxuoDy6aEJ39vT8OnvSlcC1dROdGsIqu6d6oj21r3TE5qIuNtyc_c06eb66fFnds-XB7v7hcMpOkPDAuTVGj4WWCwCFJwHJpS2MFKEgxy9OkRDSZNNJghmUOAgphKyVKXufCSDEnZ5PvEOk9Wh_0uo-uG15qDoApZErAoMJJZVzvvbO13rqmLdxOI-ixXD2Vq4dy9ViuxoHhE-O3Yy7r_pz_h74AMCl9qA</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Karaki, Tatsuro</creator><creator>Mitsudera, Humio</creator><creator>Kuroda, Hiroshi</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9153-2621</orcidid></search><sort><creationdate>20180801</creationdate><title>Buoyancy shutdown process for the development of the baroclinic jet structure of the Soya Warm Current during summer</title><author>Karaki, Tatsuro ; Mitsudera, Humio ; Kuroda, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-27caf1c2b41020440e27ebce3080516954b11c67c7c161b9030a3ed83b2f93c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bottom Ekman layer</topic><topic>Bottom mixed layer</topic><topic>Buoyancy</topic><topic>Coastal currents</topic><topic>Density gradients</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ekman layer</topic><topic>Ekman transport</topic><topic>Freshwater & Marine Ecology</topic><topic>Isobaths</topic><topic>Mathematical models</topic><topic>Metalimnion</topic><topic>Mixed layer</topic><topic>Oceanography</topic><topic>Original Article</topic><topic>Seasonal thermocline</topic><topic>Sensitivity analysis</topic><topic>Shutdowns</topic><topic>Subduction</topic><topic>Summer</topic><topic>Thermocline</topic><topic>Thickness</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karaki, Tatsuro</creatorcontrib><creatorcontrib>Mitsudera, Humio</creatorcontrib><creatorcontrib>Kuroda, Hiroshi</creatorcontrib><collection>Springer</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database (ProQuest)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karaki, Tatsuro</au><au>Mitsudera, Humio</au><au>Kuroda, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buoyancy shutdown process for the development of the baroclinic jet structure of the Soya Warm Current during summer</atitle><jtitle>Journal of oceanography</jtitle><stitle>J Oceanogr</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>74</volume><issue>4</issue><spage>339</spage><epage>350</epage><pages>339-350</pages><issn>0916-8370</issn><eissn>1573-868X</eissn><abstract>The Soya Warm Current (SWC), which is the coastal current along the northeastern part of Hokkaido, Japan, has a notable baroclinic jet structure during summer. This study addresses the formation mechanism of the baroclinic jet by analyzing a realistic numerical model and conducting its sensitivity experiment. The key process is the interaction between the seasonal thermocline and the bottom Ekman layer on the slope off the northeastern coast of Hokkaido; the bottom Ekman transport causes subduction of the warm seasonal thermocline water below the cold lower-layer water, so the bottom mixed layer develops with a remarkable cross-isobath density gradient. Consequently, the buoyancy transport vanishes as a result of the thermal wind balance in the mixed layer. The SWC area is divided into two regions during summer: upstream, the adjustment toward the buoyancy shutdown is in progress; downstream, the buoyancy shutdown occurs. The buoyancy shutdown theory assesses the bottom-mixed-layer thickness to be 50 m, consistent with observations and our numerical results. The seasonal thermocline from June to September is strong enough to establish the dominance of the buoyancy shutdown process over the frictional spindown.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10872-018-0465-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9153-2621</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8370 |
ispartof | Journal of oceanography, 2018-08, Vol.74 (4), p.339-350 |
issn | 0916-8370 1573-868X |
language | eng |
recordid | cdi_proquest_journals_2001506830 |
source | Springer Link |
subjects | Bottom Ekman layer Bottom mixed layer Buoyancy Coastal currents Density gradients Earth and Environmental Science Earth Sciences Ekman layer Ekman transport Freshwater & Marine Ecology Isobaths Mathematical models Metalimnion Mixed layer Oceanography Original Article Seasonal thermocline Sensitivity analysis Shutdowns Subduction Summer Thermocline Thickness Transport |
title | Buoyancy shutdown process for the development of the baroclinic jet structure of the Soya Warm Current during summer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buoyancy%20shutdown%20process%20for%20the%20development%20of%20the%20baroclinic%20jet%20structure%20of%20the%20Soya%20Warm%20Current%20during%20summer&rft.jtitle=Journal%20of%20oceanography&rft.au=Karaki,%20Tatsuro&rft.date=2018-08-01&rft.volume=74&rft.issue=4&rft.spage=339&rft.epage=350&rft.pages=339-350&rft.issn=0916-8370&rft.eissn=1573-868X&rft_id=info:doi/10.1007/s10872-018-0465-1&rft_dat=%3Cproquest_cross%3E2001506830%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-27caf1c2b41020440e27ebce3080516954b11c67c7c161b9030a3ed83b2f93c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2001506830&rft_id=info:pmid/&rfr_iscdi=true |