Loading…
Unsupervised Rough Set Classification Using GAs
The rough set is a useful notion for the classification of objects when the available information is not adequate to represent classes using precise sets. Rough sets have been successfully used in information systems for learning rules from an expert. This paper describes how genetic algorithms can...
Saved in:
Published in: | Journal of intelligent information systems 2001-08, Vol.16 (3), p.215 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c226t-5c9cfc351009fc4c0e5447b390223f4e52969c1d4347ef3bf13131594129d2933 |
---|---|
cites | |
container_end_page | |
container_issue | 3 |
container_start_page | 215 |
container_title | Journal of intelligent information systems |
container_volume | 16 |
creator | Lingras, Pawan |
description | The rough set is a useful notion for the classification of objects when the available information is not adequate to represent classes using precise sets. Rough sets have been successfully used in information systems for learning rules from an expert. This paper describes how genetic algorithms can be used to develop rough sets. The proposed rough set theoretic genetic encoding will be especially useful in unsupervised learning. A rough set genome consists of upper and lower bounds for sets in a partition. The partition may be as simple as the conventional expert class and its complement or a more general classification scheme. The paper provides a complete description of design and implementation of rough set genomes. The proposed design and implementation is used to provide an unsupervised rough set classification of highway sections. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1011219918340 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_200176287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>352547451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-5c9cfc351009fc4c0e5447b390223f4e52969c1d4347ef3bf13131594129d2933</originalsourceid><addsrcrecordid>eNotjk1Lw0AURQdRMFbXboP72Pcxk8lzF4pWoSCoWZd0MlNTSlIzib_fgOUuzu6cq9Q9wiMC8bJ8QkAkFMGCNVyoBI3lzObWXKoEhEwmAnStbmI8AIAUOSRqWXVxOvnht42-ST_6af-dfvoxXR3rGNvQunps-y6tYtvt03UZb9VVqI_R3525UNXL89fqNdu8r99W5SZzRPmYGScuODY4d4LTDrzR2u54PkActDckuThsNGvrA-8C8jwjGkkaEuaFevj3nob-Z_Jx3B76aejm5JYA0OZUWP4DZLdC_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200176287</pqid></control><display><type>article</type><title>Unsupervised Rough Set Classification Using GAs</title><source>ABI/INFORM Collection</source><source>Springer Link</source><creator>Lingras, Pawan</creator><creatorcontrib>Lingras, Pawan</creatorcontrib><description>The rough set is a useful notion for the classification of objects when the available information is not adequate to represent classes using precise sets. Rough sets have been successfully used in information systems for learning rules from an expert. This paper describes how genetic algorithms can be used to develop rough sets. The proposed rough set theoretic genetic encoding will be especially useful in unsupervised learning. A rough set genome consists of upper and lower bounds for sets in a partition. The partition may be as simple as the conventional expert class and its complement or a more general classification scheme. The paper provides a complete description of design and implementation of rough set genomes. The proposed design and implementation is used to provide an unsupervised rough set classification of highway sections. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0925-9902</identifier><identifier>EISSN: 1573-7675</identifier><identifier>DOI: 10.1023/A:1011219918340</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Approximation ; Classification ; Classification schemes ; Evolution ; Generations ; Genetic algorithms ; Genomes ; Information systems ; Learning ; Mutation ; Recreation ; Set theory ; Studies</subject><ispartof>Journal of intelligent information systems, 2001-08, Vol.16 (3), p.215</ispartof><rights>Copyright Kluwer Academic Publishers Aug 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-5c9cfc351009fc4c0e5447b390223f4e52969c1d4347ef3bf13131594129d2933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/200176287/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/200176287?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11666,27900,27901,36036,44338,74864</link.rule.ids></links><search><creatorcontrib>Lingras, Pawan</creatorcontrib><title>Unsupervised Rough Set Classification Using GAs</title><title>Journal of intelligent information systems</title><description>The rough set is a useful notion for the classification of objects when the available information is not adequate to represent classes using precise sets. Rough sets have been successfully used in information systems for learning rules from an expert. This paper describes how genetic algorithms can be used to develop rough sets. The proposed rough set theoretic genetic encoding will be especially useful in unsupervised learning. A rough set genome consists of upper and lower bounds for sets in a partition. The partition may be as simple as the conventional expert class and its complement or a more general classification scheme. The paper provides a complete description of design and implementation of rough set genomes. The proposed design and implementation is used to provide an unsupervised rough set classification of highway sections. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Classification</subject><subject>Classification schemes</subject><subject>Evolution</subject><subject>Generations</subject><subject>Genetic algorithms</subject><subject>Genomes</subject><subject>Information systems</subject><subject>Learning</subject><subject>Mutation</subject><subject>Recreation</subject><subject>Set theory</subject><subject>Studies</subject><issn>0925-9902</issn><issn>1573-7675</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotjk1Lw0AURQdRMFbXboP72Pcxk8lzF4pWoSCoWZd0MlNTSlIzib_fgOUuzu6cq9Q9wiMC8bJ8QkAkFMGCNVyoBI3lzObWXKoEhEwmAnStbmI8AIAUOSRqWXVxOvnht42-ST_6af-dfvoxXR3rGNvQunps-y6tYtvt03UZb9VVqI_R3525UNXL89fqNdu8r99W5SZzRPmYGScuODY4d4LTDrzR2u54PkActDckuThsNGvrA-8C8jwjGkkaEuaFevj3nob-Z_Jx3B76aejm5JYA0OZUWP4DZLdC_g</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Lingras, Pawan</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20010801</creationdate><title>Unsupervised Rough Set Classification Using GAs</title><author>Lingras, Pawan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-5c9cfc351009fc4c0e5447b390223f4e52969c1d4347ef3bf13131594129d2933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Classification</topic><topic>Classification schemes</topic><topic>Evolution</topic><topic>Generations</topic><topic>Genetic algorithms</topic><topic>Genomes</topic><topic>Information systems</topic><topic>Learning</topic><topic>Mutation</topic><topic>Recreation</topic><topic>Set theory</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lingras, Pawan</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lingras, Pawan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Rough Set Classification Using GAs</atitle><jtitle>Journal of intelligent information systems</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>16</volume><issue>3</issue><spage>215</spage><pages>215-</pages><issn>0925-9902</issn><eissn>1573-7675</eissn><abstract>The rough set is a useful notion for the classification of objects when the available information is not adequate to represent classes using precise sets. Rough sets have been successfully used in information systems for learning rules from an expert. This paper describes how genetic algorithms can be used to develop rough sets. The proposed rough set theoretic genetic encoding will be especially useful in unsupervised learning. A rough set genome consists of upper and lower bounds for sets in a partition. The partition may be as simple as the conventional expert class and its complement or a more general classification scheme. The paper provides a complete description of design and implementation of rough set genomes. The proposed design and implementation is used to provide an unsupervised rough set classification of highway sections. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1011219918340</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9902 |
ispartof | Journal of intelligent information systems, 2001-08, Vol.16 (3), p.215 |
issn | 0925-9902 1573-7675 |
language | eng |
recordid | cdi_proquest_journals_200176287 |
source | ABI/INFORM Collection; Springer Link |
subjects | Algorithms Approximation Classification Classification schemes Evolution Generations Genetic algorithms Genomes Information systems Learning Mutation Recreation Set theory Studies |
title | Unsupervised Rough Set Classification Using GAs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T21%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Rough%20Set%20Classification%20Using%20GAs&rft.jtitle=Journal%20of%20intelligent%20information%20systems&rft.au=Lingras,%20Pawan&rft.date=2001-08-01&rft.volume=16&rft.issue=3&rft.spage=215&rft.pages=215-&rft.issn=0925-9902&rft.eissn=1573-7675&rft_id=info:doi/10.1023/A:1011219918340&rft_dat=%3Cproquest%3E352547451%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c226t-5c9cfc351009fc4c0e5447b390223f4e52969c1d4347ef3bf13131594129d2933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200176287&rft_id=info:pmid/&rfr_iscdi=true |