Loading…

Unsupervised Rough Set Classification Using GAs

The rough set is a useful notion for the classification of objects when the available information is not adequate to represent classes using precise sets. Rough sets have been successfully used in information systems for learning rules from an expert. This paper describes how genetic algorithms can...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent information systems 2001-08, Vol.16 (3), p.215
Main Author: Lingras, Pawan
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c226t-5c9cfc351009fc4c0e5447b390223f4e52969c1d4347ef3bf13131594129d2933
cites
container_end_page
container_issue 3
container_start_page 215
container_title Journal of intelligent information systems
container_volume 16
creator Lingras, Pawan
description The rough set is a useful notion for the classification of objects when the available information is not adequate to represent classes using precise sets. Rough sets have been successfully used in information systems for learning rules from an expert. This paper describes how genetic algorithms can be used to develop rough sets. The proposed rough set theoretic genetic encoding will be especially useful in unsupervised learning. A rough set genome consists of upper and lower bounds for sets in a partition. The partition may be as simple as the conventional expert class and its complement or a more general classification scheme. The paper provides a complete description of design and implementation of rough set genomes. The proposed design and implementation is used to provide an unsupervised rough set classification of highway sections. [PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1011219918340
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_200176287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>352547451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-5c9cfc351009fc4c0e5447b390223f4e52969c1d4347ef3bf13131594129d2933</originalsourceid><addsrcrecordid>eNotjk1Lw0AURQdRMFbXboP72Pcxk8lzF4pWoSCoWZd0MlNTSlIzib_fgOUuzu6cq9Q9wiMC8bJ8QkAkFMGCNVyoBI3lzObWXKoEhEwmAnStbmI8AIAUOSRqWXVxOvnht42-ST_6af-dfvoxXR3rGNvQunps-y6tYtvt03UZb9VVqI_R3525UNXL89fqNdu8r99W5SZzRPmYGScuODY4d4LTDrzR2u54PkActDckuThsNGvrA-8C8jwjGkkaEuaFevj3nob-Z_Jx3B76aejm5JYA0OZUWP4DZLdC_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200176287</pqid></control><display><type>article</type><title>Unsupervised Rough Set Classification Using GAs</title><source>ABI/INFORM Collection</source><source>Springer Link</source><creator>Lingras, Pawan</creator><creatorcontrib>Lingras, Pawan</creatorcontrib><description>The rough set is a useful notion for the classification of objects when the available information is not adequate to represent classes using precise sets. Rough sets have been successfully used in information systems for learning rules from an expert. This paper describes how genetic algorithms can be used to develop rough sets. The proposed rough set theoretic genetic encoding will be especially useful in unsupervised learning. A rough set genome consists of upper and lower bounds for sets in a partition. The partition may be as simple as the conventional expert class and its complement or a more general classification scheme. The paper provides a complete description of design and implementation of rough set genomes. The proposed design and implementation is used to provide an unsupervised rough set classification of highway sections. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0925-9902</identifier><identifier>EISSN: 1573-7675</identifier><identifier>DOI: 10.1023/A:1011219918340</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Approximation ; Classification ; Classification schemes ; Evolution ; Generations ; Genetic algorithms ; Genomes ; Information systems ; Learning ; Mutation ; Recreation ; Set theory ; Studies</subject><ispartof>Journal of intelligent information systems, 2001-08, Vol.16 (3), p.215</ispartof><rights>Copyright Kluwer Academic Publishers Aug 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-5c9cfc351009fc4c0e5447b390223f4e52969c1d4347ef3bf13131594129d2933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/200176287/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/200176287?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11666,27900,27901,36036,44338,74864</link.rule.ids></links><search><creatorcontrib>Lingras, Pawan</creatorcontrib><title>Unsupervised Rough Set Classification Using GAs</title><title>Journal of intelligent information systems</title><description>The rough set is a useful notion for the classification of objects when the available information is not adequate to represent classes using precise sets. Rough sets have been successfully used in information systems for learning rules from an expert. This paper describes how genetic algorithms can be used to develop rough sets. The proposed rough set theoretic genetic encoding will be especially useful in unsupervised learning. A rough set genome consists of upper and lower bounds for sets in a partition. The partition may be as simple as the conventional expert class and its complement or a more general classification scheme. The paper provides a complete description of design and implementation of rough set genomes. The proposed design and implementation is used to provide an unsupervised rough set classification of highway sections. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Classification</subject><subject>Classification schemes</subject><subject>Evolution</subject><subject>Generations</subject><subject>Genetic algorithms</subject><subject>Genomes</subject><subject>Information systems</subject><subject>Learning</subject><subject>Mutation</subject><subject>Recreation</subject><subject>Set theory</subject><subject>Studies</subject><issn>0925-9902</issn><issn>1573-7675</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotjk1Lw0AURQdRMFbXboP72Pcxk8lzF4pWoSCoWZd0MlNTSlIzib_fgOUuzu6cq9Q9wiMC8bJ8QkAkFMGCNVyoBI3lzObWXKoEhEwmAnStbmI8AIAUOSRqWXVxOvnht42-ST_6af-dfvoxXR3rGNvQunps-y6tYtvt03UZb9VVqI_R3525UNXL89fqNdu8r99W5SZzRPmYGScuODY4d4LTDrzR2u54PkActDckuThsNGvrA-8C8jwjGkkaEuaFevj3nob-Z_Jx3B76aejm5JYA0OZUWP4DZLdC_g</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Lingras, Pawan</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20010801</creationdate><title>Unsupervised Rough Set Classification Using GAs</title><author>Lingras, Pawan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-5c9cfc351009fc4c0e5447b390223f4e52969c1d4347ef3bf13131594129d2933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Classification</topic><topic>Classification schemes</topic><topic>Evolution</topic><topic>Generations</topic><topic>Genetic algorithms</topic><topic>Genomes</topic><topic>Information systems</topic><topic>Learning</topic><topic>Mutation</topic><topic>Recreation</topic><topic>Set theory</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lingras, Pawan</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lingras, Pawan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Rough Set Classification Using GAs</atitle><jtitle>Journal of intelligent information systems</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>16</volume><issue>3</issue><spage>215</spage><pages>215-</pages><issn>0925-9902</issn><eissn>1573-7675</eissn><abstract>The rough set is a useful notion for the classification of objects when the available information is not adequate to represent classes using precise sets. Rough sets have been successfully used in information systems for learning rules from an expert. This paper describes how genetic algorithms can be used to develop rough sets. The proposed rough set theoretic genetic encoding will be especially useful in unsupervised learning. A rough set genome consists of upper and lower bounds for sets in a partition. The partition may be as simple as the conventional expert class and its complement or a more general classification scheme. The paper provides a complete description of design and implementation of rough set genomes. The proposed design and implementation is used to provide an unsupervised rough set classification of highway sections. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1011219918340</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-9902
ispartof Journal of intelligent information systems, 2001-08, Vol.16 (3), p.215
issn 0925-9902
1573-7675
language eng
recordid cdi_proquest_journals_200176287
source ABI/INFORM Collection; Springer Link
subjects Algorithms
Approximation
Classification
Classification schemes
Evolution
Generations
Genetic algorithms
Genomes
Information systems
Learning
Mutation
Recreation
Set theory
Studies
title Unsupervised Rough Set Classification Using GAs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T21%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Rough%20Set%20Classification%20Using%20GAs&rft.jtitle=Journal%20of%20intelligent%20information%20systems&rft.au=Lingras,%20Pawan&rft.date=2001-08-01&rft.volume=16&rft.issue=3&rft.spage=215&rft.pages=215-&rft.issn=0925-9902&rft.eissn=1573-7675&rft_id=info:doi/10.1023/A:1011219918340&rft_dat=%3Cproquest%3E352547451%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c226t-5c9cfc351009fc4c0e5447b390223f4e52969c1d4347ef3bf13131594129d2933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200176287&rft_id=info:pmid/&rfr_iscdi=true