Loading…
On the increase rate of random fields from space $Sub_{\varphi}(\Omega)$ on unbounded domains
This paper mainly focuses on the estimates for distribution of supremum for the normalized φ-sub-Gaussian random fields defined on the unbounded domain. In particular, we obtain the estimates for distribution of supremum for the normalized solution of the hyperbolic equation of mathematical physics,...
Saved in:
Published in: | Statistics, optimization & information computing optimization & information computing, 2014-06, Vol.2 (2), p.79 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1105-c419b47528b80d7598570ffb1d54214a7f067f23addb4ac53bcaf79000146eb3 |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | 79 |
container_title | Statistics, optimization & information computing |
container_volume | 2 |
creator | Kozachenko, Yuriy Slyvka-Tylyshchak, Anna |
description | This paper mainly focuses on the estimates for distribution of supremum for the normalized φ-sub-Gaussian random fields defined on the unbounded domain. In particular, we obtain the estimates for distribution of supremum for the normalized solution of the hyperbolic equation of mathematical physics, which will be useful to construct modeless. By using this result, we can approximate the solutions of such equation with given accuracy and reliability in the uniform metric. |
doi_str_mv | 10.19139/soic.v2i2.45 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002175135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002175135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1105-c419b47528b80d7598570ffb1d54214a7f067f23addb4ac53bcaf79000146eb3</originalsourceid><addsrcrecordid>eNotkM1PAjEUxBujiQQ5em8iBz0svnZbyh4N8Ssh4SAHD5imn7IE2rVlSYzxf3cBTzOHmfcyP4SuCYxIRcrqPsfajPa0piPGz1CPlgQKDgLOj54UAOz9Eg1yXgMAEZyPgfbQxzzg3crhOpjkVHY4qZ3D0XcabNxiX7uNzdinzudGGYeHb62WP8u9Ss2q_r1dzrfuU90NcQy4DTq2wTqLu6qqQ75CF15tshv8ax8tnh4X05diNn9-nT7MCkMI8MIwUmkmOJ3oCVjBqwkX4L0mljNKmBIexsLTUlmrmTK81EZ5UR12sLHTZR_dnM42KX61Lu_kOrYpdB8lBaDdWFLyLlWcUibFnJPzskn1VqVvSUAeGcoDQ3lgKBkv_wAsemTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002175135</pqid></control><display><type>article</type><title>On the increase rate of random fields from space $Sub_{\varphi}(\Omega)$ on unbounded domains</title><source>Social Science Premium Collection</source><source>Library & Information Science Collection</source><creator>Kozachenko, Yuriy ; Slyvka-Tylyshchak, Anna</creator><creatorcontrib>Kozachenko, Yuriy ; Slyvka-Tylyshchak, Anna</creatorcontrib><description>This paper mainly focuses on the estimates for distribution of supremum for the normalized φ-sub-Gaussian random fields defined on the unbounded domain. In particular, we obtain the estimates for distribution of supremum for the normalized solution of the hyperbolic equation of mathematical physics, which will be useful to construct modeless. By using this result, we can approximate the solutions of such equation with given accuracy and reliability in the uniform metric.</description><identifier>ISSN: 2311-004X</identifier><identifier>EISSN: 2310-5070</identifier><identifier>DOI: 10.19139/soic.v2i2.45</identifier><language>eng</language><publisher>Hong Kong: International Academic Press (Hong Kong)</publisher><subject>Estimates ; Fields (mathematics) ; Normal distribution</subject><ispartof>Statistics, optimization & information computing, 2014-06, Vol.2 (2), p.79</ispartof><rights>(c) 2014. This work is licensed under CC BY 3.0 Unported - https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1105-c419b47528b80d7598570ffb1d54214a7f067f23addb4ac53bcaf79000146eb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2002175135?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21381,21394,27924,27925,33611,33906,43733,43892</link.rule.ids></links><search><creatorcontrib>Kozachenko, Yuriy</creatorcontrib><creatorcontrib>Slyvka-Tylyshchak, Anna</creatorcontrib><title>On the increase rate of random fields from space $Sub_{\varphi}(\Omega)$ on unbounded domains</title><title>Statistics, optimization & information computing</title><description>This paper mainly focuses on the estimates for distribution of supremum for the normalized φ-sub-Gaussian random fields defined on the unbounded domain. In particular, we obtain the estimates for distribution of supremum for the normalized solution of the hyperbolic equation of mathematical physics, which will be useful to construct modeless. By using this result, we can approximate the solutions of such equation with given accuracy and reliability in the uniform metric.</description><subject>Estimates</subject><subject>Fields (mathematics)</subject><subject>Normal distribution</subject><issn>2311-004X</issn><issn>2310-5070</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CNYFK</sourceid><sourceid>M1O</sourceid><recordid>eNotkM1PAjEUxBujiQQ5em8iBz0svnZbyh4N8Ssh4SAHD5imn7IE2rVlSYzxf3cBTzOHmfcyP4SuCYxIRcrqPsfajPa0piPGz1CPlgQKDgLOj54UAOz9Eg1yXgMAEZyPgfbQxzzg3crhOpjkVHY4qZ3D0XcabNxiX7uNzdinzudGGYeHb62WP8u9Ss2q_r1dzrfuU90NcQy4DTq2wTqLu6qqQ75CF15tshv8ax8tnh4X05diNn9-nT7MCkMI8MIwUmkmOJ3oCVjBqwkX4L0mljNKmBIexsLTUlmrmTK81EZ5UR12sLHTZR_dnM42KX61Lu_kOrYpdB8lBaDdWFLyLlWcUibFnJPzskn1VqVvSUAeGcoDQ3lgKBkv_wAsemTg</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Kozachenko, Yuriy</creator><creator>Slyvka-Tylyshchak, Anna</creator><general>International Academic Press (Hong Kong)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20140601</creationdate><title>On the increase rate of random fields from space $Sub_{\varphi}(\Omega)$ on unbounded domains</title><author>Kozachenko, Yuriy ; Slyvka-Tylyshchak, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1105-c419b47528b80d7598570ffb1d54214a7f067f23addb4ac53bcaf79000146eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Estimates</topic><topic>Fields (mathematics)</topic><topic>Normal distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Kozachenko, Yuriy</creatorcontrib><creatorcontrib>Slyvka-Tylyshchak, Anna</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Statistics, optimization & information computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozachenko, Yuriy</au><au>Slyvka-Tylyshchak, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the increase rate of random fields from space $Sub_{\varphi}(\Omega)$ on unbounded domains</atitle><jtitle>Statistics, optimization & information computing</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>2</volume><issue>2</issue><spage>79</spage><pages>79-</pages><issn>2311-004X</issn><eissn>2310-5070</eissn><abstract>This paper mainly focuses on the estimates for distribution of supremum for the normalized φ-sub-Gaussian random fields defined on the unbounded domain. In particular, we obtain the estimates for distribution of supremum for the normalized solution of the hyperbolic equation of mathematical physics, which will be useful to construct modeless. By using this result, we can approximate the solutions of such equation with given accuracy and reliability in the uniform metric.</abstract><cop>Hong Kong</cop><pub>International Academic Press (Hong Kong)</pub><doi>10.19139/soic.v2i2.45</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-004X |
ispartof | Statistics, optimization & information computing, 2014-06, Vol.2 (2), p.79 |
issn | 2311-004X 2310-5070 |
language | eng |
recordid | cdi_proquest_journals_2002175135 |
source | Social Science Premium Collection; Library & Information Science Collection |
subjects | Estimates Fields (mathematics) Normal distribution |
title | On the increase rate of random fields from space $Sub_{\varphi}(\Omega)$ on unbounded domains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20increase%20rate%20of%20random%20fields%20from%20space%20$Sub_%7B%5Cvarphi%7D(%5COmega)$%20on%20unbounded%20domains&rft.jtitle=Statistics,%20optimization%20&%20information%20computing&rft.au=Kozachenko,%20Yuriy&rft.date=2014-06-01&rft.volume=2&rft.issue=2&rft.spage=79&rft.pages=79-&rft.issn=2311-004X&rft.eissn=2310-5070&rft_id=info:doi/10.19139/soic.v2i2.45&rft_dat=%3Cproquest_cross%3E2002175135%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1105-c419b47528b80d7598570ffb1d54214a7f067f23addb4ac53bcaf79000146eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2002175135&rft_id=info:pmid/&rfr_iscdi=true |