Loading…

On the increase rate of random fields from space $Sub_{\varphi}(\Omega)$ on unbounded domains

This paper mainly focuses on the estimates for distribution of supremum for the normalized φ-sub-Gaussian random fields defined on the unbounded domain. In particular, we obtain the estimates for distribution of supremum for the normalized solution of the hyperbolic equation of mathematical physics,...

Full description

Saved in:
Bibliographic Details
Published in:Statistics, optimization & information computing optimization & information computing, 2014-06, Vol.2 (2), p.79
Main Authors: Kozachenko, Yuriy, Slyvka-Tylyshchak, Anna
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1105-c419b47528b80d7598570ffb1d54214a7f067f23addb4ac53bcaf79000146eb3
cites
container_end_page
container_issue 2
container_start_page 79
container_title Statistics, optimization & information computing
container_volume 2
creator Kozachenko, Yuriy
Slyvka-Tylyshchak, Anna
description This paper mainly focuses on the estimates for distribution of supremum for the normalized φ-sub-Gaussian random fields defined on the unbounded domain. In particular, we obtain the estimates for distribution of supremum for the normalized solution of the hyperbolic equation of mathematical physics, which will be useful to construct modeless. By using this result, we can approximate the solutions of such equation with given accuracy and reliability in the uniform metric.
doi_str_mv 10.19139/soic.v2i2.45
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002175135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002175135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1105-c419b47528b80d7598570ffb1d54214a7f067f23addb4ac53bcaf79000146eb3</originalsourceid><addsrcrecordid>eNotkM1PAjEUxBujiQQ5em8iBz0svnZbyh4N8Ssh4SAHD5imn7IE2rVlSYzxf3cBTzOHmfcyP4SuCYxIRcrqPsfajPa0piPGz1CPlgQKDgLOj54UAOz9Eg1yXgMAEZyPgfbQxzzg3crhOpjkVHY4qZ3D0XcabNxiX7uNzdinzudGGYeHb62WP8u9Ss2q_r1dzrfuU90NcQy4DTq2wTqLu6qqQ75CF15tshv8ax8tnh4X05diNn9-nT7MCkMI8MIwUmkmOJ3oCVjBqwkX4L0mljNKmBIexsLTUlmrmTK81EZ5UR12sLHTZR_dnM42KX61Lu_kOrYpdB8lBaDdWFLyLlWcUibFnJPzskn1VqVvSUAeGcoDQ3lgKBkv_wAsemTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002175135</pqid></control><display><type>article</type><title>On the increase rate of random fields from space $Sub_{\varphi}(\Omega)$ on unbounded domains</title><source>Social Science Premium Collection</source><source>Library &amp; Information Science Collection</source><creator>Kozachenko, Yuriy ; Slyvka-Tylyshchak, Anna</creator><creatorcontrib>Kozachenko, Yuriy ; Slyvka-Tylyshchak, Anna</creatorcontrib><description>This paper mainly focuses on the estimates for distribution of supremum for the normalized φ-sub-Gaussian random fields defined on the unbounded domain. In particular, we obtain the estimates for distribution of supremum for the normalized solution of the hyperbolic equation of mathematical physics, which will be useful to construct modeless. By using this result, we can approximate the solutions of such equation with given accuracy and reliability in the uniform metric.</description><identifier>ISSN: 2311-004X</identifier><identifier>EISSN: 2310-5070</identifier><identifier>DOI: 10.19139/soic.v2i2.45</identifier><language>eng</language><publisher>Hong Kong: International Academic Press (Hong Kong)</publisher><subject>Estimates ; Fields (mathematics) ; Normal distribution</subject><ispartof>Statistics, optimization &amp; information computing, 2014-06, Vol.2 (2), p.79</ispartof><rights>(c) 2014. This work is licensed under CC BY 3.0 Unported - https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1105-c419b47528b80d7598570ffb1d54214a7f067f23addb4ac53bcaf79000146eb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2002175135?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21381,21394,27924,27925,33611,33906,43733,43892</link.rule.ids></links><search><creatorcontrib>Kozachenko, Yuriy</creatorcontrib><creatorcontrib>Slyvka-Tylyshchak, Anna</creatorcontrib><title>On the increase rate of random fields from space $Sub_{\varphi}(\Omega)$ on unbounded domains</title><title>Statistics, optimization &amp; information computing</title><description>This paper mainly focuses on the estimates for distribution of supremum for the normalized φ-sub-Gaussian random fields defined on the unbounded domain. In particular, we obtain the estimates for distribution of supremum for the normalized solution of the hyperbolic equation of mathematical physics, which will be useful to construct modeless. By using this result, we can approximate the solutions of such equation with given accuracy and reliability in the uniform metric.</description><subject>Estimates</subject><subject>Fields (mathematics)</subject><subject>Normal distribution</subject><issn>2311-004X</issn><issn>2310-5070</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CNYFK</sourceid><sourceid>M1O</sourceid><recordid>eNotkM1PAjEUxBujiQQ5em8iBz0svnZbyh4N8Ssh4SAHD5imn7IE2rVlSYzxf3cBTzOHmfcyP4SuCYxIRcrqPsfajPa0piPGz1CPlgQKDgLOj54UAOz9Eg1yXgMAEZyPgfbQxzzg3crhOpjkVHY4qZ3D0XcabNxiX7uNzdinzudGGYeHb62WP8u9Ss2q_r1dzrfuU90NcQy4DTq2wTqLu6qqQ75CF15tshv8ax8tnh4X05diNn9-nT7MCkMI8MIwUmkmOJ3oCVjBqwkX4L0mljNKmBIexsLTUlmrmTK81EZ5UR12sLHTZR_dnM42KX61Lu_kOrYpdB8lBaDdWFLyLlWcUibFnJPzskn1VqVvSUAeGcoDQ3lgKBkv_wAsemTg</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Kozachenko, Yuriy</creator><creator>Slyvka-Tylyshchak, Anna</creator><general>International Academic Press (Hong Kong)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20140601</creationdate><title>On the increase rate of random fields from space $Sub_{\varphi}(\Omega)$ on unbounded domains</title><author>Kozachenko, Yuriy ; Slyvka-Tylyshchak, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1105-c419b47528b80d7598570ffb1d54214a7f067f23addb4ac53bcaf79000146eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Estimates</topic><topic>Fields (mathematics)</topic><topic>Normal distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Kozachenko, Yuriy</creatorcontrib><creatorcontrib>Slyvka-Tylyshchak, Anna</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Library Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Statistics, optimization &amp; information computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozachenko, Yuriy</au><au>Slyvka-Tylyshchak, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the increase rate of random fields from space $Sub_{\varphi}(\Omega)$ on unbounded domains</atitle><jtitle>Statistics, optimization &amp; information computing</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>2</volume><issue>2</issue><spage>79</spage><pages>79-</pages><issn>2311-004X</issn><eissn>2310-5070</eissn><abstract>This paper mainly focuses on the estimates for distribution of supremum for the normalized φ-sub-Gaussian random fields defined on the unbounded domain. In particular, we obtain the estimates for distribution of supremum for the normalized solution of the hyperbolic equation of mathematical physics, which will be useful to construct modeless. By using this result, we can approximate the solutions of such equation with given accuracy and reliability in the uniform metric.</abstract><cop>Hong Kong</cop><pub>International Academic Press (Hong Kong)</pub><doi>10.19139/soic.v2i2.45</doi></addata></record>
fulltext fulltext
identifier ISSN: 2311-004X
ispartof Statistics, optimization & information computing, 2014-06, Vol.2 (2), p.79
issn 2311-004X
2310-5070
language eng
recordid cdi_proquest_journals_2002175135
source Social Science Premium Collection; Library & Information Science Collection
subjects Estimates
Fields (mathematics)
Normal distribution
title On the increase rate of random fields from space $Sub_{\varphi}(\Omega)$ on unbounded domains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20increase%20rate%20of%20random%20fields%20from%20space%20$Sub_%7B%5Cvarphi%7D(%5COmega)$%20on%20unbounded%20domains&rft.jtitle=Statistics,%20optimization%20&%20information%20computing&rft.au=Kozachenko,%20Yuriy&rft.date=2014-06-01&rft.volume=2&rft.issue=2&rft.spage=79&rft.pages=79-&rft.issn=2311-004X&rft.eissn=2310-5070&rft_id=info:doi/10.19139/soic.v2i2.45&rft_dat=%3Cproquest_cross%3E2002175135%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1105-c419b47528b80d7598570ffb1d54214a7f067f23addb4ac53bcaf79000146eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2002175135&rft_id=info:pmid/&rfr_iscdi=true