Loading…

Vacuum Calcination Induced Conversion of Selenium/Carbon Wires to Tubes for High‐Performance Sodium–Selenium Batteries

A vacuum calcination approach is developed to fabricate selenium/carbon composites, which does not require intensive mixing and durable heating such as in commonly used melt‐infusion methods of loading selenium into carbon hosts. Starting from carbon‐coated selenium wires prepared via a wet‐chemical...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2018-02, Vol.28 (8), p.n/a
Main Authors: Yang, Xuming, Wang, Hongkang, Yu, Denis Y. W., Rogach, Andrey L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3569-edb39dbe180555c4b73693faa09eed7eefa8bd93017c5ec855ad2e1261846ff93
cites cdi_FETCH-LOGICAL-c3569-edb39dbe180555c4b73693faa09eed7eefa8bd93017c5ec855ad2e1261846ff93
container_end_page n/a
container_issue 8
container_start_page
container_title Advanced functional materials
container_volume 28
creator Yang, Xuming
Wang, Hongkang
Yu, Denis Y. W.
Rogach, Andrey L.
description A vacuum calcination approach is developed to fabricate selenium/carbon composites, which does not require intensive mixing and durable heating such as in commonly used melt‐infusion methods of loading selenium into carbon hosts. Starting from carbon‐coated selenium wires prepared via a wet‐chemical reaction, selenium/carbon tubes are fabricated by a straightforward calcination process. The calcination is conducted in a confined space to reduce the insulating carbon shell under vacuum, and selenium melts but remains a constituting part of the composite. Paired with sodium metal anode, the resultant selenium/carbon tubes deliver a high reversible capacity of 601 and 509 mA h g−1 at 0.2 and 2 C normalized by the mass of selenium, which corresponds to energy and power densities of 860 and 667 Wh kg−1 at 193 and 1770 W kg−1, respectively. Such capacity and rate performance surpasses most typical cathode materials for lithium or sodium (ion) batteries, according to the comparative literature analysis. Moreover, the robust tubular‐like hollow structure of the selenium/carbon composites ensures for impressive capacity retention of more than 90% after 1000 cycles at 20 C. Carbon coated selenium wires are converted into selenium/carbon tubes as a result of calcination treatment in a space‐confined space under vacuum. When used as cathode materials for sodium–selenium batteries, the obtained composite delivers exceptional cycle stability and rate performance, which are correlated to the tubular structure and supportive carbon frameworks.
doi_str_mv 10.1002/adfm.201706609
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002990291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002990291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3569-edb39dbe180555c4b73693faa09eed7eefa8bd93017c5ec855ad2e1261846ff93</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZW2JdVo7aR5elkBppSKQymsXOfYYUiVxsRNQWfUTkPjDfgmuCmXJYjQP3TOjuQidUtKjhPh9LlXV8wmNSRQRtoc6NKKRFxA_2d_V9OkQHVk7J04WB4MO-njgom0rnPJSFDVvCl3jSS1bARKnun4DYzcjrfAMSqiLtuqn3ORu9FgYsLjR-K7NXaG0wePi-WW9-rwF47qK1wLwTEvHrFdfvzg-500DpgB7jA4ULy2c_OQuuh9d3qVjb3pzNUmHU08EYcQ8kHnAZA40IWEYikEeBxELFOeEAcgYQPEkl8z9FosQRBKGXPpA_Ygmg0gpFnTR2XbvwujXFmyTzXVrancy851vjLmgTtXbqoTR1hpQ2cIUFTfLjJJs42-28Tfb-esAtgXeixKW_6iz4cXo-o_9BqangyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002990291</pqid></control><display><type>article</type><title>Vacuum Calcination Induced Conversion of Selenium/Carbon Wires to Tubes for High‐Performance Sodium–Selenium Batteries</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Yang, Xuming ; Wang, Hongkang ; Yu, Denis Y. W. ; Rogach, Andrey L.</creator><creatorcontrib>Yang, Xuming ; Wang, Hongkang ; Yu, Denis Y. W. ; Rogach, Andrey L.</creatorcontrib><description>A vacuum calcination approach is developed to fabricate selenium/carbon composites, which does not require intensive mixing and durable heating such as in commonly used melt‐infusion methods of loading selenium into carbon hosts. Starting from carbon‐coated selenium wires prepared via a wet‐chemical reaction, selenium/carbon tubes are fabricated by a straightforward calcination process. The calcination is conducted in a confined space to reduce the insulating carbon shell under vacuum, and selenium melts but remains a constituting part of the composite. Paired with sodium metal anode, the resultant selenium/carbon tubes deliver a high reversible capacity of 601 and 509 mA h g−1 at 0.2 and 2 C normalized by the mass of selenium, which corresponds to energy and power densities of 860 and 667 Wh kg−1 at 193 and 1770 W kg−1, respectively. Such capacity and rate performance surpasses most typical cathode materials for lithium or sodium (ion) batteries, according to the comparative literature analysis. Moreover, the robust tubular‐like hollow structure of the selenium/carbon composites ensures for impressive capacity retention of more than 90% after 1000 cycles at 20 C. Carbon coated selenium wires are converted into selenium/carbon tubes as a result of calcination treatment in a space‐confined space under vacuum. When used as cathode materials for sodium–selenium batteries, the obtained composite delivers exceptional cycle stability and rate performance, which are correlated to the tubular structure and supportive carbon frameworks.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201706609</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Carbon ; Chemical reactions ; Confined spaces ; Electrode materials ; Lithium ; Materials science ; Melts ; Roasting ; Selenium ; selenium/carbon composites ; Sodium-ion batteries ; sodium–selenium batteries ; Tubes ; vacuum calcination ; wire‐to‐tube conversion</subject><ispartof>Advanced functional materials, 2018-02, Vol.28 (8), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3569-edb39dbe180555c4b73693faa09eed7eefa8bd93017c5ec855ad2e1261846ff93</citedby><cites>FETCH-LOGICAL-c3569-edb39dbe180555c4b73693faa09eed7eefa8bd93017c5ec855ad2e1261846ff93</cites><orcidid>0000-0002-8263-8141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, Xuming</creatorcontrib><creatorcontrib>Wang, Hongkang</creatorcontrib><creatorcontrib>Yu, Denis Y. W.</creatorcontrib><creatorcontrib>Rogach, Andrey L.</creatorcontrib><title>Vacuum Calcination Induced Conversion of Selenium/Carbon Wires to Tubes for High‐Performance Sodium–Selenium Batteries</title><title>Advanced functional materials</title><description>A vacuum calcination approach is developed to fabricate selenium/carbon composites, which does not require intensive mixing and durable heating such as in commonly used melt‐infusion methods of loading selenium into carbon hosts. Starting from carbon‐coated selenium wires prepared via a wet‐chemical reaction, selenium/carbon tubes are fabricated by a straightforward calcination process. The calcination is conducted in a confined space to reduce the insulating carbon shell under vacuum, and selenium melts but remains a constituting part of the composite. Paired with sodium metal anode, the resultant selenium/carbon tubes deliver a high reversible capacity of 601 and 509 mA h g−1 at 0.2 and 2 C normalized by the mass of selenium, which corresponds to energy and power densities of 860 and 667 Wh kg−1 at 193 and 1770 W kg−1, respectively. Such capacity and rate performance surpasses most typical cathode materials for lithium or sodium (ion) batteries, according to the comparative literature analysis. Moreover, the robust tubular‐like hollow structure of the selenium/carbon composites ensures for impressive capacity retention of more than 90% after 1000 cycles at 20 C. Carbon coated selenium wires are converted into selenium/carbon tubes as a result of calcination treatment in a space‐confined space under vacuum. When used as cathode materials for sodium–selenium batteries, the obtained composite delivers exceptional cycle stability and rate performance, which are correlated to the tubular structure and supportive carbon frameworks.</description><subject>Batteries</subject><subject>Carbon</subject><subject>Chemical reactions</subject><subject>Confined spaces</subject><subject>Electrode materials</subject><subject>Lithium</subject><subject>Materials science</subject><subject>Melts</subject><subject>Roasting</subject><subject>Selenium</subject><subject>selenium/carbon composites</subject><subject>Sodium-ion batteries</subject><subject>sodium–selenium batteries</subject><subject>Tubes</subject><subject>vacuum calcination</subject><subject>wire‐to‐tube conversion</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqWwZW2JdVo7aR5elkBppSKQymsXOfYYUiVxsRNQWfUTkPjDfgmuCmXJYjQP3TOjuQidUtKjhPh9LlXV8wmNSRQRtoc6NKKRFxA_2d_V9OkQHVk7J04WB4MO-njgom0rnPJSFDVvCl3jSS1bARKnun4DYzcjrfAMSqiLtuqn3ORu9FgYsLjR-K7NXaG0wePi-WW9-rwF47qK1wLwTEvHrFdfvzg-500DpgB7jA4ULy2c_OQuuh9d3qVjb3pzNUmHU08EYcQ8kHnAZA40IWEYikEeBxELFOeEAcgYQPEkl8z9FosQRBKGXPpA_Ygmg0gpFnTR2XbvwujXFmyTzXVrancy851vjLmgTtXbqoTR1hpQ2cIUFTfLjJJs42-28Tfb-esAtgXeixKW_6iz4cXo-o_9BqangyY</recordid><startdate>20180221</startdate><enddate>20180221</enddate><creator>Yang, Xuming</creator><creator>Wang, Hongkang</creator><creator>Yu, Denis Y. W.</creator><creator>Rogach, Andrey L.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8263-8141</orcidid></search><sort><creationdate>20180221</creationdate><title>Vacuum Calcination Induced Conversion of Selenium/Carbon Wires to Tubes for High‐Performance Sodium–Selenium Batteries</title><author>Yang, Xuming ; Wang, Hongkang ; Yu, Denis Y. W. ; Rogach, Andrey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3569-edb39dbe180555c4b73693faa09eed7eefa8bd93017c5ec855ad2e1261846ff93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Carbon</topic><topic>Chemical reactions</topic><topic>Confined spaces</topic><topic>Electrode materials</topic><topic>Lithium</topic><topic>Materials science</topic><topic>Melts</topic><topic>Roasting</topic><topic>Selenium</topic><topic>selenium/carbon composites</topic><topic>Sodium-ion batteries</topic><topic>sodium–selenium batteries</topic><topic>Tubes</topic><topic>vacuum calcination</topic><topic>wire‐to‐tube conversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xuming</creatorcontrib><creatorcontrib>Wang, Hongkang</creatorcontrib><creatorcontrib>Yu, Denis Y. W.</creatorcontrib><creatorcontrib>Rogach, Andrey L.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xuming</au><au>Wang, Hongkang</au><au>Yu, Denis Y. W.</au><au>Rogach, Andrey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacuum Calcination Induced Conversion of Selenium/Carbon Wires to Tubes for High‐Performance Sodium–Selenium Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2018-02-21</date><risdate>2018</risdate><volume>28</volume><issue>8</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A vacuum calcination approach is developed to fabricate selenium/carbon composites, which does not require intensive mixing and durable heating such as in commonly used melt‐infusion methods of loading selenium into carbon hosts. Starting from carbon‐coated selenium wires prepared via a wet‐chemical reaction, selenium/carbon tubes are fabricated by a straightforward calcination process. The calcination is conducted in a confined space to reduce the insulating carbon shell under vacuum, and selenium melts but remains a constituting part of the composite. Paired with sodium metal anode, the resultant selenium/carbon tubes deliver a high reversible capacity of 601 and 509 mA h g−1 at 0.2 and 2 C normalized by the mass of selenium, which corresponds to energy and power densities of 860 and 667 Wh kg−1 at 193 and 1770 W kg−1, respectively. Such capacity and rate performance surpasses most typical cathode materials for lithium or sodium (ion) batteries, according to the comparative literature analysis. Moreover, the robust tubular‐like hollow structure of the selenium/carbon composites ensures for impressive capacity retention of more than 90% after 1000 cycles at 20 C. Carbon coated selenium wires are converted into selenium/carbon tubes as a result of calcination treatment in a space‐confined space under vacuum. When used as cathode materials for sodium–selenium batteries, the obtained composite delivers exceptional cycle stability and rate performance, which are correlated to the tubular structure and supportive carbon frameworks.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201706609</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8263-8141</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-02, Vol.28 (8), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2002990291
source Wiley-Blackwell Read & Publish Collection
subjects Batteries
Carbon
Chemical reactions
Confined spaces
Electrode materials
Lithium
Materials science
Melts
Roasting
Selenium
selenium/carbon composites
Sodium-ion batteries
sodium–selenium batteries
Tubes
vacuum calcination
wire‐to‐tube conversion
title Vacuum Calcination Induced Conversion of Selenium/Carbon Wires to Tubes for High‐Performance Sodium–Selenium Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacuum%20Calcination%20Induced%20Conversion%20of%20Selenium/Carbon%20Wires%20to%20Tubes%20for%20High%E2%80%90Performance%20Sodium%E2%80%93Selenium%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Yang,%20Xuming&rft.date=2018-02-21&rft.volume=28&rft.issue=8&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201706609&rft_dat=%3Cproquest_cross%3E2002990291%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3569-edb39dbe180555c4b73693faa09eed7eefa8bd93017c5ec855ad2e1261846ff93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2002990291&rft_id=info:pmid/&rfr_iscdi=true