Loading…

Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review

[Display omitted] •Polyoxymethylene dimethyl ether (OME) are synthetic, functionalized oxygenate fuels.•OME combustion exhibits strongly reduced soot particle formation.•Current liquid-phase synthesis involves costly intermediates.•OME product distribution follows the Schulz-Flory distribution.•Adop...

Full description

Saved in:
Bibliographic Details
Published in:Applied catalysis. B, Environmental Environmental, 2017-11, Vol.217, p.407-420
Main Authors: Baranowski, Christophe J., Bahmanpour, Ali M., Kröcher, Oliver
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-df6d61ff7951df6193bedc2055e71f0cf17bfb6c79623e57890a0be5e2a2857e3
cites cdi_FETCH-LOGICAL-c371t-df6d61ff7951df6193bedc2055e71f0cf17bfb6c79623e57890a0be5e2a2857e3
container_end_page 420
container_issue
container_start_page 407
container_title Applied catalysis. B, Environmental
container_volume 217
creator Baranowski, Christophe J.
Bahmanpour, Ali M.
Kröcher, Oliver
description [Display omitted] •Polyoxymethylene dimethyl ether (OME) are synthetic, functionalized oxygenate fuels.•OME combustion exhibits strongly reduced soot particle formation.•Current liquid-phase synthesis involves costly intermediates.•OME product distribution follows the Schulz-Flory distribution.•Adoption of this technology requires efficient catalysts for selective synthesis. Polyoxymethylene dimethyl ethers (OME) containing 3–5 CH2O units (OME3–5) are appealing oxygenated fuels, which can be used in diesel engines with only slight fuel system modifications. Their combustion leads to reduced hazardous exhaust gas emissions compared to standard diesel. Due to the absence of C-to-C bonds, they considerably reduce soot formation, allowing in turn significantly higher exhaust gas recirculation (EGR) rates to reduce NOx emissions. Established liquid-phase OME production processes involve trioxane as a costly intermediate. Moreover, the OME product equilibrium composition follows a Schulz-Flory distribution making selective synthesis of specific chain length cumbersome. Current research efforts focus on simplifying the existing processes by using fewer steps, simpler reactants and less energy. Several catalyst classes were reported to catalyze OME acid synthesis. Little is known about the reaction mechanisms and the elementary steps involved. This review highlights the need for more systematic research on new reactants, efficient catalysts and simpler processes.
doi_str_mv 10.1016/j.apcatb.2017.06.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2003018622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337317305507</els_id><sourcerecordid>2003018622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-df6d61ff7951df6193bedc2055e71f0cf17bfb6c79623e57890a0be5e2a2857e3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwDxgsscCQcLaJnTAgVVUpSEVdYLYS56w6SpNgp0D-PanCzHL3hvfe6T5CrhnEDJi8r-K8M3lfxByYikHGAOqEzFiqRCTSVJySGWRcRkIocU4uQqgAgAuezsh6mfd5PfTO0DA0_Q6DC7S1tGvrof0Z9tjvhhobpKWbNB0n-kBvt2-ru0e6oB6_HH5fkjOb1wGv_vacfDyv3pcv0Wa7fl0uNpERivVRaWUpmbUqS9ioWSYKLA2HJEHFLBjLVGELaVQmucBEpRnkUGCCPOdpolDMyc3U2_n284Ch11V78M14UnMAASyVnI-uh8llfBuCR6s77_a5HzQDfUSmKz0h00dkGqQekY2xpymG4wfjV14H47AxWDqPptdl6_4v-AVWb3ZL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2003018622</pqid></control><display><type>article</type><title>Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review</title><source>ScienceDirect Freedom Collection</source><creator>Baranowski, Christophe J. ; Bahmanpour, Ali M. ; Kröcher, Oliver</creator><creatorcontrib>Baranowski, Christophe J. ; Bahmanpour, Ali M. ; Kröcher, Oliver</creatorcontrib><description>[Display omitted] •Polyoxymethylene dimethyl ether (OME) are synthetic, functionalized oxygenate fuels.•OME combustion exhibits strongly reduced soot particle formation.•Current liquid-phase synthesis involves costly intermediates.•OME product distribution follows the Schulz-Flory distribution.•Adoption of this technology requires efficient catalysts for selective synthesis. Polyoxymethylene dimethyl ethers (OME) containing 3–5 CH2O units (OME3–5) are appealing oxygenated fuels, which can be used in diesel engines with only slight fuel system modifications. Their combustion leads to reduced hazardous exhaust gas emissions compared to standard diesel. Due to the absence of C-to-C bonds, they considerably reduce soot formation, allowing in turn significantly higher exhaust gas recirculation (EGR) rates to reduce NOx emissions. Established liquid-phase OME production processes involve trioxane as a costly intermediate. Moreover, the OME product equilibrium composition follows a Schulz-Flory distribution making selective synthesis of specific chain length cumbersome. Current research efforts focus on simplifying the existing processes by using fewer steps, simpler reactants and less energy. Several catalyst classes were reported to catalyze OME acid synthesis. Little is known about the reaction mechanisms and the elementary steps involved. This review highlights the need for more systematic research on new reactants, efficient catalysts and simpler processes.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2017.06.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catalysis ; Catalysts ; Chemical synthesis ; Diesel ; Diesel engines ; Dimethyl ether ; Emissions ; Ethers ; Exhaust gases ; Exhaust systems ; Fuel systems ; Internal combustion engines ; Nitrogen oxides ; OME ; Oxygenated fuel ; Polyoxymethylene dimethyl ethers ; POME ; Reaction mechanisms ; Soot ; Studies ; Synthetic biofuel</subject><ispartof>Applied catalysis. B, Environmental, 2017-11, Vol.217, p.407-420</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-df6d61ff7951df6193bedc2055e71f0cf17bfb6c79623e57890a0be5e2a2857e3</citedby><cites>FETCH-LOGICAL-c371t-df6d61ff7951df6193bedc2055e71f0cf17bfb6c79623e57890a0be5e2a2857e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Baranowski, Christophe J.</creatorcontrib><creatorcontrib>Bahmanpour, Ali M.</creatorcontrib><creatorcontrib>Kröcher, Oliver</creatorcontrib><title>Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Polyoxymethylene dimethyl ether (OME) are synthetic, functionalized oxygenate fuels.•OME combustion exhibits strongly reduced soot particle formation.•Current liquid-phase synthesis involves costly intermediates.•OME product distribution follows the Schulz-Flory distribution.•Adoption of this technology requires efficient catalysts for selective synthesis. Polyoxymethylene dimethyl ethers (OME) containing 3–5 CH2O units (OME3–5) are appealing oxygenated fuels, which can be used in diesel engines with only slight fuel system modifications. Their combustion leads to reduced hazardous exhaust gas emissions compared to standard diesel. Due to the absence of C-to-C bonds, they considerably reduce soot formation, allowing in turn significantly higher exhaust gas recirculation (EGR) rates to reduce NOx emissions. Established liquid-phase OME production processes involve trioxane as a costly intermediate. Moreover, the OME product equilibrium composition follows a Schulz-Flory distribution making selective synthesis of specific chain length cumbersome. Current research efforts focus on simplifying the existing processes by using fewer steps, simpler reactants and less energy. Several catalyst classes were reported to catalyze OME acid synthesis. Little is known about the reaction mechanisms and the elementary steps involved. This review highlights the need for more systematic research on new reactants, efficient catalysts and simpler processes.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Diesel</subject><subject>Diesel engines</subject><subject>Dimethyl ether</subject><subject>Emissions</subject><subject>Ethers</subject><subject>Exhaust gases</subject><subject>Exhaust systems</subject><subject>Fuel systems</subject><subject>Internal combustion engines</subject><subject>Nitrogen oxides</subject><subject>OME</subject><subject>Oxygenated fuel</subject><subject>Polyoxymethylene dimethyl ethers</subject><subject>POME</subject><subject>Reaction mechanisms</subject><subject>Soot</subject><subject>Studies</subject><subject>Synthetic biofuel</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwDxgsscCQcLaJnTAgVVUpSEVdYLYS56w6SpNgp0D-PanCzHL3hvfe6T5CrhnEDJi8r-K8M3lfxByYikHGAOqEzFiqRCTSVJySGWRcRkIocU4uQqgAgAuezsh6mfd5PfTO0DA0_Q6DC7S1tGvrof0Z9tjvhhobpKWbNB0n-kBvt2-ru0e6oB6_HH5fkjOb1wGv_vacfDyv3pcv0Wa7fl0uNpERivVRaWUpmbUqS9ioWSYKLA2HJEHFLBjLVGELaVQmucBEpRnkUGCCPOdpolDMyc3U2_n284Ch11V78M14UnMAASyVnI-uh8llfBuCR6s77_a5HzQDfUSmKz0h00dkGqQekY2xpymG4wfjV14H47AxWDqPptdl6_4v-AVWb3ZL</recordid><startdate>20171115</startdate><enddate>20171115</enddate><creator>Baranowski, Christophe J.</creator><creator>Bahmanpour, Ali M.</creator><creator>Kröcher, Oliver</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20171115</creationdate><title>Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review</title><author>Baranowski, Christophe J. ; Bahmanpour, Ali M. ; Kröcher, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-df6d61ff7951df6193bedc2055e71f0cf17bfb6c79623e57890a0be5e2a2857e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Diesel</topic><topic>Diesel engines</topic><topic>Dimethyl ether</topic><topic>Emissions</topic><topic>Ethers</topic><topic>Exhaust gases</topic><topic>Exhaust systems</topic><topic>Fuel systems</topic><topic>Internal combustion engines</topic><topic>Nitrogen oxides</topic><topic>OME</topic><topic>Oxygenated fuel</topic><topic>Polyoxymethylene dimethyl ethers</topic><topic>POME</topic><topic>Reaction mechanisms</topic><topic>Soot</topic><topic>Studies</topic><topic>Synthetic biofuel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranowski, Christophe J.</creatorcontrib><creatorcontrib>Bahmanpour, Ali M.</creatorcontrib><creatorcontrib>Kröcher, Oliver</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranowski, Christophe J.</au><au>Bahmanpour, Ali M.</au><au>Kröcher, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2017-11-15</date><risdate>2017</risdate><volume>217</volume><spage>407</spage><epage>420</epage><pages>407-420</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Polyoxymethylene dimethyl ether (OME) are synthetic, functionalized oxygenate fuels.•OME combustion exhibits strongly reduced soot particle formation.•Current liquid-phase synthesis involves costly intermediates.•OME product distribution follows the Schulz-Flory distribution.•Adoption of this technology requires efficient catalysts for selective synthesis. Polyoxymethylene dimethyl ethers (OME) containing 3–5 CH2O units (OME3–5) are appealing oxygenated fuels, which can be used in diesel engines with only slight fuel system modifications. Their combustion leads to reduced hazardous exhaust gas emissions compared to standard diesel. Due to the absence of C-to-C bonds, they considerably reduce soot formation, allowing in turn significantly higher exhaust gas recirculation (EGR) rates to reduce NOx emissions. Established liquid-phase OME production processes involve trioxane as a costly intermediate. Moreover, the OME product equilibrium composition follows a Schulz-Flory distribution making selective synthesis of specific chain length cumbersome. Current research efforts focus on simplifying the existing processes by using fewer steps, simpler reactants and less energy. Several catalyst classes were reported to catalyze OME acid synthesis. Little is known about the reaction mechanisms and the elementary steps involved. This review highlights the need for more systematic research on new reactants, efficient catalysts and simpler processes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2017.06.007</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2017-11, Vol.217, p.407-420
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2003018622
source ScienceDirect Freedom Collection
subjects Catalysis
Catalysts
Chemical synthesis
Diesel
Diesel engines
Dimethyl ether
Emissions
Ethers
Exhaust gases
Exhaust systems
Fuel systems
Internal combustion engines
Nitrogen oxides
OME
Oxygenated fuel
Polyoxymethylene dimethyl ethers
POME
Reaction mechanisms
Soot
Studies
Synthetic biofuel
title Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20synthesis%20of%20polyoxymethylene%20dimethyl%20ethers%20(OME):%20A%20review&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Baranowski,%20Christophe%20J.&rft.date=2017-11-15&rft.volume=217&rft.spage=407&rft.epage=420&rft.pages=407-420&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2017.06.007&rft_dat=%3Cproquest_cross%3E2003018622%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-df6d61ff7951df6193bedc2055e71f0cf17bfb6c79623e57890a0be5e2a2857e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2003018622&rft_id=info:pmid/&rfr_iscdi=true