Loading…
Visualization of Anomalies Using Mixture Models
Anomaly detection is important to learn from major past events and to prepare for future crises. We propose a new anomaly detection method that visualizes multivariate data in a 2- or 3-dimensional space based on the probability of belonging to a mixture component and the probability of not belongin...
Saved in:
Published in: | Journal of intelligent manufacturing 2005-12, Vol.16 (6), p.635-643 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c315t-1882baabd0a3ce967bb716573c139ec44276516df15ceef1a33e8ce90ca07a0c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c315t-1882baabd0a3ce967bb716573c139ec44276516df15ceef1a33e8ce90ca07a0c3 |
container_end_page | 643 |
container_issue | 6 |
container_start_page | 635 |
container_title | Journal of intelligent manufacturing |
container_volume | 16 |
creator | Iwata, Tomoharu Saito, Kazumi |
description | Anomaly detection is important to learn from major past events and to prepare for future crises. We propose a new anomaly detection method that visualizes multivariate data in a 2- or 3-dimensional space based on the probability of belonging to a mixture component and the probability of not belonging to any components. It helps to visually understand not only the magnitude of anomalies but also the relationships among anomalous and normal samples. This may provide new knowledge in the data, since we can see it from a different viewpoint. We show the validity of the proposed method by using both an artificial and an economic time series. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s10845-005-4367-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_200514627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>923973511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-1882baabd0a3ce967bb716573c139ec44276516df15ceef1a33e8ce90ca07a0c3</originalsourceid><addsrcrecordid>eNotkE1Lw0AQhhdRsFZ_gLfgfe1M9is5luIXtHixXpfNZiNb0mzdTSD6602Jp4GXZ-ZlHkLuER4RQK0SQsEFBRCUM6noeEEWKFROC-TikiygFJIKgeKa3KR0AICykLggq0-fBtP6X9P70GWhydZdOE6BS9k--e4r2_mxH6LLdqF2bbolV41pk7v7n0uyf3762LzS7fvL22a9pZah6CkWRV4ZU9VgmHWlVFWlUArFLLLSWc5zJQXKukFhnWvQMOaKCQRrQBmwbEke5runGL4Hl3p9CEPspkqdT08il7maIJwhG0NK0TX6FP3RxB-NoM9a9KxFTxv6rEWP7A915lUz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200514627</pqid></control><display><type>article</type><title>Visualization of Anomalies Using Mixture Models</title><source>ABI/INFORM Collection</source><source>Springer Link</source><creator>Iwata, Tomoharu ; Saito, Kazumi</creator><creatorcontrib>Iwata, Tomoharu ; Saito, Kazumi</creatorcontrib><description>Anomaly detection is important to learn from major past events and to prepare for future crises. We propose a new anomaly detection method that visualizes multivariate data in a 2- or 3-dimensional space based on the probability of belonging to a mixture component and the probability of not belonging to any components. It helps to visually understand not only the magnitude of anomalies but also the relationships among anomalous and normal samples. This may provide new knowledge in the data, since we can see it from a different viewpoint. We show the validity of the proposed method by using both an artificial and an economic time series. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-005-4367-x</identifier><language>eng</language><publisher>London: Springer Nature B.V</publisher><subject>Data analysis ; Economic statistics ; Entropy ; Manufacturing ; Maximum likelihood method ; Normal distribution ; Probability ; Studies ; Time series ; Visualization</subject><ispartof>Journal of intelligent manufacturing, 2005-12, Vol.16 (6), p.635-643</ispartof><rights>Springer Science+Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-1882baabd0a3ce967bb716573c139ec44276516df15ceef1a33e8ce90ca07a0c3</citedby><cites>FETCH-LOGICAL-c315t-1882baabd0a3ce967bb716573c139ec44276516df15ceef1a33e8ce90ca07a0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/200514627/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/200514627?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Iwata, Tomoharu</creatorcontrib><creatorcontrib>Saito, Kazumi</creatorcontrib><title>Visualization of Anomalies Using Mixture Models</title><title>Journal of intelligent manufacturing</title><description>Anomaly detection is important to learn from major past events and to prepare for future crises. We propose a new anomaly detection method that visualizes multivariate data in a 2- or 3-dimensional space based on the probability of belonging to a mixture component and the probability of not belonging to any components. It helps to visually understand not only the magnitude of anomalies but also the relationships among anomalous and normal samples. This may provide new knowledge in the data, since we can see it from a different viewpoint. We show the validity of the proposed method by using both an artificial and an economic time series. [PUBLICATION ABSTRACT]</description><subject>Data analysis</subject><subject>Economic statistics</subject><subject>Entropy</subject><subject>Manufacturing</subject><subject>Maximum likelihood method</subject><subject>Normal distribution</subject><subject>Probability</subject><subject>Studies</subject><subject>Time series</subject><subject>Visualization</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotkE1Lw0AQhhdRsFZ_gLfgfe1M9is5luIXtHixXpfNZiNb0mzdTSD6602Jp4GXZ-ZlHkLuER4RQK0SQsEFBRCUM6noeEEWKFROC-TikiygFJIKgeKa3KR0AICykLggq0-fBtP6X9P70GWhydZdOE6BS9k--e4r2_mxH6LLdqF2bbolV41pk7v7n0uyf3762LzS7fvL22a9pZah6CkWRV4ZU9VgmHWlVFWlUArFLLLSWc5zJQXKukFhnWvQMOaKCQRrQBmwbEke5runGL4Hl3p9CEPspkqdT08il7maIJwhG0NK0TX6FP3RxB-NoM9a9KxFTxv6rEWP7A915lUz</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Iwata, Tomoharu</creator><creator>Saito, Kazumi</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200512</creationdate><title>Visualization of Anomalies Using Mixture Models</title><author>Iwata, Tomoharu ; Saito, Kazumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-1882baabd0a3ce967bb716573c139ec44276516df15ceef1a33e8ce90ca07a0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Data analysis</topic><topic>Economic statistics</topic><topic>Entropy</topic><topic>Manufacturing</topic><topic>Maximum likelihood method</topic><topic>Normal distribution</topic><topic>Probability</topic><topic>Studies</topic><topic>Time series</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwata, Tomoharu</creatorcontrib><creatorcontrib>Saito, Kazumi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwata, Tomoharu</au><au>Saito, Kazumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualization of Anomalies Using Mixture Models</atitle><jtitle>Journal of intelligent manufacturing</jtitle><date>2005-12</date><risdate>2005</risdate><volume>16</volume><issue>6</issue><spage>635</spage><epage>643</epage><pages>635-643</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>Anomaly detection is important to learn from major past events and to prepare for future crises. We propose a new anomaly detection method that visualizes multivariate data in a 2- or 3-dimensional space based on the probability of belonging to a mixture component and the probability of not belonging to any components. It helps to visually understand not only the magnitude of anomalies but also the relationships among anomalous and normal samples. This may provide new knowledge in the data, since we can see it from a different viewpoint. We show the validity of the proposed method by using both an artificial and an economic time series. [PUBLICATION ABSTRACT]</abstract><cop>London</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10845-005-4367-x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5515 |
ispartof | Journal of intelligent manufacturing, 2005-12, Vol.16 (6), p.635-643 |
issn | 0956-5515 1572-8145 |
language | eng |
recordid | cdi_proquest_journals_200514627 |
source | ABI/INFORM Collection; Springer Link |
subjects | Data analysis Economic statistics Entropy Manufacturing Maximum likelihood method Normal distribution Probability Studies Time series Visualization |
title | Visualization of Anomalies Using Mixture Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualization%20of%20Anomalies%20Using%20Mixture%20Models&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Iwata,%20Tomoharu&rft.date=2005-12&rft.volume=16&rft.issue=6&rft.spage=635&rft.epage=643&rft.pages=635-643&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-005-4367-x&rft_dat=%3Cproquest_cross%3E923973511%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-1882baabd0a3ce967bb716573c139ec44276516df15ceef1a33e8ce90ca07a0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200514627&rft_id=info:pmid/&rfr_iscdi=true |