Loading…

Visualization of Anomalies Using Mixture Models

Anomaly detection is important to learn from major past events and to prepare for future crises. We propose a new anomaly detection method that visualizes multivariate data in a 2- or 3-dimensional space based on the probability of belonging to a mixture component and the probability of not belongin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent manufacturing 2005-12, Vol.16 (6), p.635-643
Main Authors: Iwata, Tomoharu, Saito, Kazumi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-1882baabd0a3ce967bb716573c139ec44276516df15ceef1a33e8ce90ca07a0c3
cites cdi_FETCH-LOGICAL-c315t-1882baabd0a3ce967bb716573c139ec44276516df15ceef1a33e8ce90ca07a0c3
container_end_page 643
container_issue 6
container_start_page 635
container_title Journal of intelligent manufacturing
container_volume 16
creator Iwata, Tomoharu
Saito, Kazumi
description Anomaly detection is important to learn from major past events and to prepare for future crises. We propose a new anomaly detection method that visualizes multivariate data in a 2- or 3-dimensional space based on the probability of belonging to a mixture component and the probability of not belonging to any components. It helps to visually understand not only the magnitude of anomalies but also the relationships among anomalous and normal samples. This may provide new knowledge in the data, since we can see it from a different viewpoint. We show the validity of the proposed method by using both an artificial and an economic time series. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s10845-005-4367-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_200514627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>923973511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-1882baabd0a3ce967bb716573c139ec44276516df15ceef1a33e8ce90ca07a0c3</originalsourceid><addsrcrecordid>eNotkE1Lw0AQhhdRsFZ_gLfgfe1M9is5luIXtHixXpfNZiNb0mzdTSD6602Jp4GXZ-ZlHkLuER4RQK0SQsEFBRCUM6noeEEWKFROC-TikiygFJIKgeKa3KR0AICykLggq0-fBtP6X9P70GWhydZdOE6BS9k--e4r2_mxH6LLdqF2bbolV41pk7v7n0uyf3762LzS7fvL22a9pZah6CkWRV4ZU9VgmHWlVFWlUArFLLLSWc5zJQXKukFhnWvQMOaKCQRrQBmwbEke5runGL4Hl3p9CEPspkqdT08il7maIJwhG0NK0TX6FP3RxB-NoM9a9KxFTxv6rEWP7A915lUz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200514627</pqid></control><display><type>article</type><title>Visualization of Anomalies Using Mixture Models</title><source>ABI/INFORM Collection</source><source>Springer Link</source><creator>Iwata, Tomoharu ; Saito, Kazumi</creator><creatorcontrib>Iwata, Tomoharu ; Saito, Kazumi</creatorcontrib><description>Anomaly detection is important to learn from major past events and to prepare for future crises. We propose a new anomaly detection method that visualizes multivariate data in a 2- or 3-dimensional space based on the probability of belonging to a mixture component and the probability of not belonging to any components. It helps to visually understand not only the magnitude of anomalies but also the relationships among anomalous and normal samples. This may provide new knowledge in the data, since we can see it from a different viewpoint. We show the validity of the proposed method by using both an artificial and an economic time series. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-005-4367-x</identifier><language>eng</language><publisher>London: Springer Nature B.V</publisher><subject>Data analysis ; Economic statistics ; Entropy ; Manufacturing ; Maximum likelihood method ; Normal distribution ; Probability ; Studies ; Time series ; Visualization</subject><ispartof>Journal of intelligent manufacturing, 2005-12, Vol.16 (6), p.635-643</ispartof><rights>Springer Science+Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-1882baabd0a3ce967bb716573c139ec44276516df15ceef1a33e8ce90ca07a0c3</citedby><cites>FETCH-LOGICAL-c315t-1882baabd0a3ce967bb716573c139ec44276516df15ceef1a33e8ce90ca07a0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/200514627/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/200514627?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Iwata, Tomoharu</creatorcontrib><creatorcontrib>Saito, Kazumi</creatorcontrib><title>Visualization of Anomalies Using Mixture Models</title><title>Journal of intelligent manufacturing</title><description>Anomaly detection is important to learn from major past events and to prepare for future crises. We propose a new anomaly detection method that visualizes multivariate data in a 2- or 3-dimensional space based on the probability of belonging to a mixture component and the probability of not belonging to any components. It helps to visually understand not only the magnitude of anomalies but also the relationships among anomalous and normal samples. This may provide new knowledge in the data, since we can see it from a different viewpoint. We show the validity of the proposed method by using both an artificial and an economic time series. [PUBLICATION ABSTRACT]</description><subject>Data analysis</subject><subject>Economic statistics</subject><subject>Entropy</subject><subject>Manufacturing</subject><subject>Maximum likelihood method</subject><subject>Normal distribution</subject><subject>Probability</subject><subject>Studies</subject><subject>Time series</subject><subject>Visualization</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotkE1Lw0AQhhdRsFZ_gLfgfe1M9is5luIXtHixXpfNZiNb0mzdTSD6602Jp4GXZ-ZlHkLuER4RQK0SQsEFBRCUM6noeEEWKFROC-TikiygFJIKgeKa3KR0AICykLggq0-fBtP6X9P70GWhydZdOE6BS9k--e4r2_mxH6LLdqF2bbolV41pk7v7n0uyf3762LzS7fvL22a9pZah6CkWRV4ZU9VgmHWlVFWlUArFLLLSWc5zJQXKukFhnWvQMOaKCQRrQBmwbEke5runGL4Hl3p9CEPspkqdT08il7maIJwhG0NK0TX6FP3RxB-NoM9a9KxFTxv6rEWP7A915lUz</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Iwata, Tomoharu</creator><creator>Saito, Kazumi</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200512</creationdate><title>Visualization of Anomalies Using Mixture Models</title><author>Iwata, Tomoharu ; Saito, Kazumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-1882baabd0a3ce967bb716573c139ec44276516df15ceef1a33e8ce90ca07a0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Data analysis</topic><topic>Economic statistics</topic><topic>Entropy</topic><topic>Manufacturing</topic><topic>Maximum likelihood method</topic><topic>Normal distribution</topic><topic>Probability</topic><topic>Studies</topic><topic>Time series</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwata, Tomoharu</creatorcontrib><creatorcontrib>Saito, Kazumi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwata, Tomoharu</au><au>Saito, Kazumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualization of Anomalies Using Mixture Models</atitle><jtitle>Journal of intelligent manufacturing</jtitle><date>2005-12</date><risdate>2005</risdate><volume>16</volume><issue>6</issue><spage>635</spage><epage>643</epage><pages>635-643</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>Anomaly detection is important to learn from major past events and to prepare for future crises. We propose a new anomaly detection method that visualizes multivariate data in a 2- or 3-dimensional space based on the probability of belonging to a mixture component and the probability of not belonging to any components. It helps to visually understand not only the magnitude of anomalies but also the relationships among anomalous and normal samples. This may provide new knowledge in the data, since we can see it from a different viewpoint. We show the validity of the proposed method by using both an artificial and an economic time series. [PUBLICATION ABSTRACT]</abstract><cop>London</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10845-005-4367-x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-5515
ispartof Journal of intelligent manufacturing, 2005-12, Vol.16 (6), p.635-643
issn 0956-5515
1572-8145
language eng
recordid cdi_proquest_journals_200514627
source ABI/INFORM Collection; Springer Link
subjects Data analysis
Economic statistics
Entropy
Manufacturing
Maximum likelihood method
Normal distribution
Probability
Studies
Time series
Visualization
title Visualization of Anomalies Using Mixture Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualization%20of%20Anomalies%20Using%20Mixture%20Models&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Iwata,%20Tomoharu&rft.date=2005-12&rft.volume=16&rft.issue=6&rft.spage=635&rft.epage=643&rft.pages=635-643&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-005-4367-x&rft_dat=%3Cproquest_cross%3E923973511%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-1882baabd0a3ce967bb716573c139ec44276516df15ceef1a33e8ce90ca07a0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200514627&rft_id=info:pmid/&rfr_iscdi=true