Loading…
The cytoskeletal protein ezrin regulates EC proliferation and angiogenesis via TNF-[alpha]-induced transcriptional repression of cyclin A
TNF-alpha modulates EC proliferation and thereby plays a central role in new blood vessel formation in physiologic and pathologic circumstances. TNF-alpha is known to downregulate cyclin A, a key cell cycle regulatory protein, but little else is known about how TNF-alpha modulates EC cell cycle and...
Saved in:
Published in: | The Journal of clinical investigation 2005-07, Vol.115 (7), p.1785 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | TNF-alpha modulates EC proliferation and thereby plays a central role in new blood vessel formation in physiologic and pathologic circumstances. TNF-alpha is known to downregulate cyclin A, a key cell cycle regulatory protein, but little else is known about how TNF-alpha modulates EC cell cycle and angiogenesis. Using primary ECs, we show that ezrin, previously considered to act primarily as a cytoskeletal protein and in cytoplasmic signaling, is a TNF-alpha-induced transcriptional repressor. TNF-alpha exposure leads to Rho kinase-mediated phosphorylation of ezrin, which translocates to the nucleus and binds to cell cycle homology region repressor elements within the cyclin A promoter. Overexpression of dominant-negative ezrin blocks TNF-alpha-induced modulation of ezrin function and rescues cyclin A expression and EC proliferation. In vivo, blockade of ezrin leads to enhanced transplanted EC proliferation and angiogenesis in a mouse hind limb ischemia model. These observations suggest that TNF-alpha regulates angiogenesis via Rho kinase induction of a transcriptional repressor function of the cytoskeletal protein ezrin and that ezrin may represent a suitable therapeutic target for processes dependent on EC proliferation. |
---|---|
ISSN: | 0021-9738 1558-8238 |