Loading…

Flavodoxin overexpression reduces cadmium-induced damage in alfalfa root nodules

Flavodoxins are electron carrier flavoproteins that are involved in the response to oxidative stress in bacteria and cyanobacteria. Recently, we obtained Sinorhizobium meliloti bacteria that overexpressed a flavodoxin from the cyanobacterium Anabaena variabilis [Redondo et al. (2009) Plant Physiolog...

Full description

Saved in:
Bibliographic Details
Published in:Plant and soil 2010, Vol.326 (1-2), p.109-121
Main Authors: Shvaleva, Alla, Coba de la Peña, Teodoro, Rincón, Ana, Morcillo, César N, García de la Torre, Vanesa S, Lucas, M. Mercedes, Pueyo, José J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flavodoxins are electron carrier flavoproteins that are involved in the response to oxidative stress in bacteria and cyanobacteria. Recently, we obtained Sinorhizobium meliloti bacteria that overexpressed a flavodoxin from the cyanobacterium Anabaena variabilis [Redondo et al. (2009) Plant Physiology 149:1166-1178]. In the present work, tolerance to cadmium was evaluated in free-living transformed S. meliloti and in alfalfa plants nodulated by the flavodoxin-overexpressing rhizobia, in comparison with plants nodulated by wild-type bacteria. Overexpression of flavodoxin protected free-living S. meliloti from cadmium toxicity and had a positive effect on nitrogen fixation of alfalfa plants subjected to cadmium stress. Flavodoxin notably reduced cadmium-induced structural and ultrastructural alterations in alfalfa nodules. Putative protection mechanisms in flavodoxin-overexpressing nodules are discussed. Flavodoxin could have applications as a biotechnological tool to improve the symbiotic performance of alfalfa and other legumes in cadmium polluted soils.
ISSN:0032-079X
1573-5036
DOI:10.1007/s11104-009-9985-1