Loading…
Heat–Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46−x Clathrate with Au Compositional Gradient
Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat–electric power conversion mechanism using a material consisting of...
Saved in:
Published in: | Journal of electronic materials 2018-06, Vol.47 (6), p.3273-3276 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1183-37f54e3a606230c329d7796f1e1a4a22ae78f7dc750b724e7271cb90c4a49e6d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1183-37f54e3a606230c329d7796f1e1a4a22ae78f7dc750b724e7271cb90c4a49e6d3 |
container_end_page | 3276 |
container_issue | 6 |
container_start_page | 3273 |
container_title | Journal of electronic materials |
container_volume | 47 |
creator | Osakabe, Yuki Tatsumi, Shota Kotsubo, Yuichi Iwanaga, Junpei Yamasoto, Keita Munetoh, Shinji Furukimi, Osamu Nakashima, Kunihiko |
description | Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat–electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat–electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8AuxSi46−x clathrate. Single-crystal Ba8AuxSi46−x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference. |
doi_str_mv | 10.1007/s11664-018-6115-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2006983633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2006983633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1183-37f54e3a606230c329d7796f1e1a4a22ae78f7dc750b724e7271cb90c4a49e6d3</originalsourceid><addsrcrecordid>eNotkM1K7TAUhYMoePx5AGcBx9Hspk3aoda_C4KCR3QWYs6uRnqamqRqZw6FO_O-oU9yK8fRGuy1PxYfIXvAD4BzdRgBpMwZh5JJgIKNa2QGRS4YlPJ-ncy4kMCKTBSbZCvGZ86hgBJm5O8FmvT98e-0RZuCs_Tav2Ggte9eMUTnO3rn0pMfEp3jssdg0hCQnrimwYCdRXobXfdIr7p2pB2bjz3SY1MeDfSd3rhcfn9-vdO6Nelp-kT6NrHodKz9svfRpYlvWnoezMJhl3bIRmPaiLu_uU1uz07n9QW7vDr_Ux9dMgtQCiZUU-QojOQyE9yKrFooVckGEExussygKhu1sKrgDyrLUWUK7EPFbW7yCuVCbJP9FbcP_mXAmPSzH8K0JOqMc1mVQgoxtWDVssHHGLDRfXBLE0YNXP841yvnenKuf5zrUfwHLx53SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006983633</pqid></control><display><type>article</type><title>Heat–Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46−x Clathrate with Au Compositional Gradient</title><source>Springer Nature</source><creator>Osakabe, Yuki ; Tatsumi, Shota ; Kotsubo, Yuichi ; Iwanaga, Junpei ; Yamasoto, Keita ; Munetoh, Shinji ; Furukimi, Osamu ; Nakashima, Kunihiko</creator><creatorcontrib>Osakabe, Yuki ; Tatsumi, Shota ; Kotsubo, Yuichi ; Iwanaga, Junpei ; Yamasoto, Keita ; Munetoh, Shinji ; Furukimi, Osamu ; Nakashima, Kunihiko</creatorcontrib><description>Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat–electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat–electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8AuxSi46−x clathrate. Single-crystal Ba8AuxSi46−x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-018-6115-y</identifier><language>eng</language><publisher>Warrendale: Springer Nature B.V</publisher><subject>Chemical compounds ; Czochralski method ; Electric power ; Electrical properties ; Energy conversion efficiency ; Gold ; Heat ; Heat flux ; Materials research ; N-type semiconductors ; P-type semiconductors ; Seebeck effect ; Single crystals ; Temperature ; Temperature gradients ; Thermoelectric power generation</subject><ispartof>Journal of electronic materials, 2018-06, Vol.47 (6), p.3273-3276</ispartof><rights>Journal of Electronic Materials is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1183-37f54e3a606230c329d7796f1e1a4a22ae78f7dc750b724e7271cb90c4a49e6d3</citedby><cites>FETCH-LOGICAL-c1183-37f54e3a606230c329d7796f1e1a4a22ae78f7dc750b724e7271cb90c4a49e6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Osakabe, Yuki</creatorcontrib><creatorcontrib>Tatsumi, Shota</creatorcontrib><creatorcontrib>Kotsubo, Yuichi</creatorcontrib><creatorcontrib>Iwanaga, Junpei</creatorcontrib><creatorcontrib>Yamasoto, Keita</creatorcontrib><creatorcontrib>Munetoh, Shinji</creatorcontrib><creatorcontrib>Furukimi, Osamu</creatorcontrib><creatorcontrib>Nakashima, Kunihiko</creatorcontrib><title>Heat–Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46−x Clathrate with Au Compositional Gradient</title><title>Journal of electronic materials</title><description>Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat–electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat–electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8AuxSi46−x clathrate. Single-crystal Ba8AuxSi46−x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference.</description><subject>Chemical compounds</subject><subject>Czochralski method</subject><subject>Electric power</subject><subject>Electrical properties</subject><subject>Energy conversion efficiency</subject><subject>Gold</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Materials research</subject><subject>N-type semiconductors</subject><subject>P-type semiconductors</subject><subject>Seebeck effect</subject><subject>Single crystals</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Thermoelectric power generation</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkM1K7TAUhYMoePx5AGcBx9Hspk3aoda_C4KCR3QWYs6uRnqamqRqZw6FO_O-oU9yK8fRGuy1PxYfIXvAD4BzdRgBpMwZh5JJgIKNa2QGRS4YlPJ-ncy4kMCKTBSbZCvGZ86hgBJm5O8FmvT98e-0RZuCs_Tav2Ggte9eMUTnO3rn0pMfEp3jssdg0hCQnrimwYCdRXobXfdIr7p2pB2bjz3SY1MeDfSd3rhcfn9-vdO6Nelp-kT6NrHodKz9svfRpYlvWnoezMJhl3bIRmPaiLu_uU1uz07n9QW7vDr_Ux9dMgtQCiZUU-QojOQyE9yKrFooVckGEExussygKhu1sKrgDyrLUWUK7EPFbW7yCuVCbJP9FbcP_mXAmPSzH8K0JOqMc1mVQgoxtWDVssHHGLDRfXBLE0YNXP841yvnenKuf5zrUfwHLx53SQ</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Osakabe, Yuki</creator><creator>Tatsumi, Shota</creator><creator>Kotsubo, Yuichi</creator><creator>Iwanaga, Junpei</creator><creator>Yamasoto, Keita</creator><creator>Munetoh, Shinji</creator><creator>Furukimi, Osamu</creator><creator>Nakashima, Kunihiko</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201806</creationdate><title>Heat–Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46−x Clathrate with Au Compositional Gradient</title><author>Osakabe, Yuki ; Tatsumi, Shota ; Kotsubo, Yuichi ; Iwanaga, Junpei ; Yamasoto, Keita ; Munetoh, Shinji ; Furukimi, Osamu ; Nakashima, Kunihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1183-37f54e3a606230c329d7796f1e1a4a22ae78f7dc750b724e7271cb90c4a49e6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical compounds</topic><topic>Czochralski method</topic><topic>Electric power</topic><topic>Electrical properties</topic><topic>Energy conversion efficiency</topic><topic>Gold</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Materials research</topic><topic>N-type semiconductors</topic><topic>P-type semiconductors</topic><topic>Seebeck effect</topic><topic>Single crystals</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Thermoelectric power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osakabe, Yuki</creatorcontrib><creatorcontrib>Tatsumi, Shota</creatorcontrib><creatorcontrib>Kotsubo, Yuichi</creatorcontrib><creatorcontrib>Iwanaga, Junpei</creatorcontrib><creatorcontrib>Yamasoto, Keita</creatorcontrib><creatorcontrib>Munetoh, Shinji</creatorcontrib><creatorcontrib>Furukimi, Osamu</creatorcontrib><creatorcontrib>Nakashima, Kunihiko</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Proquest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osakabe, Yuki</au><au>Tatsumi, Shota</au><au>Kotsubo, Yuichi</au><au>Iwanaga, Junpei</au><au>Yamasoto, Keita</au><au>Munetoh, Shinji</au><au>Furukimi, Osamu</au><au>Nakashima, Kunihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat–Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46−x Clathrate with Au Compositional Gradient</atitle><jtitle>Journal of electronic materials</jtitle><date>2018-06</date><risdate>2018</risdate><volume>47</volume><issue>6</issue><spage>3273</spage><epage>3276</epage><pages>3273-3276</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat–electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat–electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8AuxSi46−x clathrate. Single-crystal Ba8AuxSi46−x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference.</abstract><cop>Warrendale</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11664-018-6115-y</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2018-06, Vol.47 (6), p.3273-3276 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2006983633 |
source | Springer Nature |
subjects | Chemical compounds Czochralski method Electric power Electrical properties Energy conversion efficiency Gold Heat Heat flux Materials research N-type semiconductors P-type semiconductors Seebeck effect Single crystals Temperature Temperature gradients Thermoelectric power generation |
title | Heat–Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46−x Clathrate with Au Compositional Gradient |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%E2%80%93Electric%20Power%20Conversion%20Without%20Temperature%20Difference%20Using%20Only%20n-Type%20Ba8Au%20x%20Si46%E2%88%92x%20Clathrate%20with%20Au%20Compositional%20Gradient&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Osakabe,%20Yuki&rft.date=2018-06&rft.volume=47&rft.issue=6&rft.spage=3273&rft.epage=3276&rft.pages=3273-3276&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-018-6115-y&rft_dat=%3Cproquest_cross%3E2006983633%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1183-37f54e3a606230c329d7796f1e1a4a22ae78f7dc750b724e7271cb90c4a49e6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2006983633&rft_id=info:pmid/&rfr_iscdi=true |