Loading…

Heat–Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46−x Clathrate with Au Compositional Gradient

Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat–electric power conversion mechanism using a material consisting of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2018-06, Vol.47 (6), p.3273-3276
Main Authors: Osakabe, Yuki, Tatsumi, Shota, Kotsubo, Yuichi, Iwanaga, Junpei, Yamasoto, Keita, Munetoh, Shinji, Furukimi, Osamu, Nakashima, Kunihiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1183-37f54e3a606230c329d7796f1e1a4a22ae78f7dc750b724e7271cb90c4a49e6d3
cites cdi_FETCH-LOGICAL-c1183-37f54e3a606230c329d7796f1e1a4a22ae78f7dc750b724e7271cb90c4a49e6d3
container_end_page 3276
container_issue 6
container_start_page 3273
container_title Journal of electronic materials
container_volume 47
creator Osakabe, Yuki
Tatsumi, Shota
Kotsubo, Yuichi
Iwanaga, Junpei
Yamasoto, Keita
Munetoh, Shinji
Furukimi, Osamu
Nakashima, Kunihiko
description Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat–electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat–electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8AuxSi46−x clathrate. Single-crystal Ba8AuxSi46−x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference.
doi_str_mv 10.1007/s11664-018-6115-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2006983633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2006983633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1183-37f54e3a606230c329d7796f1e1a4a22ae78f7dc750b724e7271cb90c4a49e6d3</originalsourceid><addsrcrecordid>eNotkM1K7TAUhYMoePx5AGcBx9Hspk3aoda_C4KCR3QWYs6uRnqamqRqZw6FO_O-oU9yK8fRGuy1PxYfIXvAD4BzdRgBpMwZh5JJgIKNa2QGRS4YlPJ-ncy4kMCKTBSbZCvGZ86hgBJm5O8FmvT98e-0RZuCs_Tav2Ggte9eMUTnO3rn0pMfEp3jssdg0hCQnrimwYCdRXobXfdIr7p2pB2bjz3SY1MeDfSd3rhcfn9-vdO6Nelp-kT6NrHodKz9svfRpYlvWnoezMJhl3bIRmPaiLu_uU1uz07n9QW7vDr_Ux9dMgtQCiZUU-QojOQyE9yKrFooVckGEExussygKhu1sKrgDyrLUWUK7EPFbW7yCuVCbJP9FbcP_mXAmPSzH8K0JOqMc1mVQgoxtWDVssHHGLDRfXBLE0YNXP841yvnenKuf5zrUfwHLx53SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006983633</pqid></control><display><type>article</type><title>Heat–Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46−x Clathrate with Au Compositional Gradient</title><source>Springer Nature</source><creator>Osakabe, Yuki ; Tatsumi, Shota ; Kotsubo, Yuichi ; Iwanaga, Junpei ; Yamasoto, Keita ; Munetoh, Shinji ; Furukimi, Osamu ; Nakashima, Kunihiko</creator><creatorcontrib>Osakabe, Yuki ; Tatsumi, Shota ; Kotsubo, Yuichi ; Iwanaga, Junpei ; Yamasoto, Keita ; Munetoh, Shinji ; Furukimi, Osamu ; Nakashima, Kunihiko</creatorcontrib><description>Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat–electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat–electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8AuxSi46−x clathrate. Single-crystal Ba8AuxSi46−x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-018-6115-y</identifier><language>eng</language><publisher>Warrendale: Springer Nature B.V</publisher><subject>Chemical compounds ; Czochralski method ; Electric power ; Electrical properties ; Energy conversion efficiency ; Gold ; Heat ; Heat flux ; Materials research ; N-type semiconductors ; P-type semiconductors ; Seebeck effect ; Single crystals ; Temperature ; Temperature gradients ; Thermoelectric power generation</subject><ispartof>Journal of electronic materials, 2018-06, Vol.47 (6), p.3273-3276</ispartof><rights>Journal of Electronic Materials is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1183-37f54e3a606230c329d7796f1e1a4a22ae78f7dc750b724e7271cb90c4a49e6d3</citedby><cites>FETCH-LOGICAL-c1183-37f54e3a606230c329d7796f1e1a4a22ae78f7dc750b724e7271cb90c4a49e6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Osakabe, Yuki</creatorcontrib><creatorcontrib>Tatsumi, Shota</creatorcontrib><creatorcontrib>Kotsubo, Yuichi</creatorcontrib><creatorcontrib>Iwanaga, Junpei</creatorcontrib><creatorcontrib>Yamasoto, Keita</creatorcontrib><creatorcontrib>Munetoh, Shinji</creatorcontrib><creatorcontrib>Furukimi, Osamu</creatorcontrib><creatorcontrib>Nakashima, Kunihiko</creatorcontrib><title>Heat–Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46−x Clathrate with Au Compositional Gradient</title><title>Journal of electronic materials</title><description>Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat–electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat–electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8AuxSi46−x clathrate. Single-crystal Ba8AuxSi46−x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference.</description><subject>Chemical compounds</subject><subject>Czochralski method</subject><subject>Electric power</subject><subject>Electrical properties</subject><subject>Energy conversion efficiency</subject><subject>Gold</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Materials research</subject><subject>N-type semiconductors</subject><subject>P-type semiconductors</subject><subject>Seebeck effect</subject><subject>Single crystals</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Thermoelectric power generation</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkM1K7TAUhYMoePx5AGcBx9Hspk3aoda_C4KCR3QWYs6uRnqamqRqZw6FO_O-oU9yK8fRGuy1PxYfIXvAD4BzdRgBpMwZh5JJgIKNa2QGRS4YlPJ-ncy4kMCKTBSbZCvGZ86hgBJm5O8FmvT98e-0RZuCs_Tav2Ggte9eMUTnO3rn0pMfEp3jssdg0hCQnrimwYCdRXobXfdIr7p2pB2bjz3SY1MeDfSd3rhcfn9-vdO6Nelp-kT6NrHodKz9svfRpYlvWnoezMJhl3bIRmPaiLu_uU1uz07n9QW7vDr_Ux9dMgtQCiZUU-QojOQyE9yKrFooVckGEExussygKhu1sKrgDyrLUWUK7EPFbW7yCuVCbJP9FbcP_mXAmPSzH8K0JOqMc1mVQgoxtWDVssHHGLDRfXBLE0YNXP841yvnenKuf5zrUfwHLx53SQ</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Osakabe, Yuki</creator><creator>Tatsumi, Shota</creator><creator>Kotsubo, Yuichi</creator><creator>Iwanaga, Junpei</creator><creator>Yamasoto, Keita</creator><creator>Munetoh, Shinji</creator><creator>Furukimi, Osamu</creator><creator>Nakashima, Kunihiko</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201806</creationdate><title>Heat–Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46−x Clathrate with Au Compositional Gradient</title><author>Osakabe, Yuki ; Tatsumi, Shota ; Kotsubo, Yuichi ; Iwanaga, Junpei ; Yamasoto, Keita ; Munetoh, Shinji ; Furukimi, Osamu ; Nakashima, Kunihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1183-37f54e3a606230c329d7796f1e1a4a22ae78f7dc750b724e7271cb90c4a49e6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical compounds</topic><topic>Czochralski method</topic><topic>Electric power</topic><topic>Electrical properties</topic><topic>Energy conversion efficiency</topic><topic>Gold</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Materials research</topic><topic>N-type semiconductors</topic><topic>P-type semiconductors</topic><topic>Seebeck effect</topic><topic>Single crystals</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Thermoelectric power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osakabe, Yuki</creatorcontrib><creatorcontrib>Tatsumi, Shota</creatorcontrib><creatorcontrib>Kotsubo, Yuichi</creatorcontrib><creatorcontrib>Iwanaga, Junpei</creatorcontrib><creatorcontrib>Yamasoto, Keita</creatorcontrib><creatorcontrib>Munetoh, Shinji</creatorcontrib><creatorcontrib>Furukimi, Osamu</creatorcontrib><creatorcontrib>Nakashima, Kunihiko</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Proquest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osakabe, Yuki</au><au>Tatsumi, Shota</au><au>Kotsubo, Yuichi</au><au>Iwanaga, Junpei</au><au>Yamasoto, Keita</au><au>Munetoh, Shinji</au><au>Furukimi, Osamu</au><au>Nakashima, Kunihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat–Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46−x Clathrate with Au Compositional Gradient</atitle><jtitle>Journal of electronic materials</jtitle><date>2018-06</date><risdate>2018</risdate><volume>47</volume><issue>6</issue><spage>3273</spage><epage>3276</epage><pages>3273-3276</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat–electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat–electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8AuxSi46−x clathrate. Single-crystal Ba8AuxSi46−x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference.</abstract><cop>Warrendale</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11664-018-6115-y</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2018-06, Vol.47 (6), p.3273-3276
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2006983633
source Springer Nature
subjects Chemical compounds
Czochralski method
Electric power
Electrical properties
Energy conversion efficiency
Gold
Heat
Heat flux
Materials research
N-type semiconductors
P-type semiconductors
Seebeck effect
Single crystals
Temperature
Temperature gradients
Thermoelectric power generation
title Heat–Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46−x Clathrate with Au Compositional Gradient
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%E2%80%93Electric%20Power%20Conversion%20Without%20Temperature%20Difference%20Using%20Only%20n-Type%20Ba8Au%20x%20Si46%E2%88%92x%20Clathrate%20with%20Au%20Compositional%20Gradient&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Osakabe,%20Yuki&rft.date=2018-06&rft.volume=47&rft.issue=6&rft.spage=3273&rft.epage=3276&rft.pages=3273-3276&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-018-6115-y&rft_dat=%3Cproquest_cross%3E2006983633%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1183-37f54e3a606230c329d7796f1e1a4a22ae78f7dc750b724e7271cb90c4a49e6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2006983633&rft_id=info:pmid/&rfr_iscdi=true