Loading…

Cross talk between β subunits, intracellular Ca 2+ signaling, and SNARE s in the modulation of Ca V 2.1 channel steady‐state inactivation

Modulation of CaV2.1 channel activity plays a key role in interneuronal communication and synaptic plasticity. SNAREs interact with a specific synprint site at the second intracellular loop (LII‐III) of the CaV2.1 pore‐forming α1A subunit to optimize neurotransmitter release from presynaptic termina...

Full description

Saved in:
Bibliographic Details
Published in:Physiological reports 2018-01, Vol.6 (2)
Main Authors: Serra, Selma Angèlica, Gené, Gemma G, Xabier Elorza‐Vidal, José M. Fernández‐Fernández
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 2
container_start_page
container_title Physiological reports
container_volume 6
creator Serra, Selma Angèlica
Gené, Gemma G
Xabier Elorza‐Vidal
José M. Fernández‐Fernández
description Modulation of CaV2.1 channel activity plays a key role in interneuronal communication and synaptic plasticity. SNAREs interact with a specific synprint site at the second intracellular loop (LII‐III) of the CaV2.1 pore‐forming α1A subunit to optimize neurotransmitter release from presynaptic terminals by allowing secretory vesicles docking near the Ca2+ entry pathway, and by modulating the voltage dependence of channel steady‐state inactivation. Ca2+ influx through CaV2.1 also promotes channel inactivation. This process seems to involve Ca2+‐calmodulin interaction with two adjacent sites in the α1A carboxyl tail (C‐tail) (the IQ‐like motif and the Calmodulin‐Binding Domain (CBD) site), and contributes to long‐term potentiation and spatial learning and memory. Besides, binding of regulatory β subunits to the α interaction domain (AID) at the first intracellular loop (LI‐II) of α1A determines the degree of channel inactivation by both voltage and Ca2+. Here, we explore the cross talk between β subunits, Ca2+, and syntaxin‐1A‐modulated CaV2.1 inactivation, highlighting the α1A domains involved in such process. β3‐containing CaV2.1 channels show syntaxin‐1A‐modulated but no Ca2+‐dependent steady‐state inactivation. Conversely, β2a‐containing CaV2.1 channels show Ca2+‐dependent but not syntaxin‐1A‐modulated steady‐state inactivation. A LI‐II deletion confers Ca2+‐dependent inactivation and prevents modulation by syntaxin‐1A in β3‐containing CaV2.1 channels. Mutation of the IQ‐like motif, unlike CBD deletion, abolishes Ca2+‐dependent inactivation and confers modulation by syntaxin‐1A in β2a‐containing CaV2.1 channels. Altogether, these results suggest that LI‐II structural modifications determine the regulation of CaV2.1 steady‐state inactivation either by Ca2+ or by SNAREs but not by both.
doi_str_mv 10.14814/phy2.13557
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2007133452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007133452</sourcerecordid><originalsourceid>FETCH-proquest_journals_20071334523</originalsourceid><addsrcrecordid>eNqNzj1OAzEQBWALCYkIUnGBkShJgn92taFEqyAqioAQXTTZdbIOxg47Y1A6DkDBWTgIh-AkGMQBqF7zPb0nxLGSE1VMVXG27XZ6okxZVntioGWpxlNV3R-IIdFGSqmkMeeyGIi3uo9EwOgfYGn5xdoAnx9AaZmCYxqBC9xjY71PHnuoEfQpkFsH9C6sR4ChhZvri_kMKFPgzsJjbLNlFwPE1U_jDvIVaDoMwXogttjuvl7fiZFtLmHD7vnXH4n9FXqyw788FCeXs9v6arzt41OyxItNTH2epoWWslLGFKU2_1PfxdRZAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007133452</pqid></control><display><type>article</type><title>Cross talk between β subunits, intracellular Ca 2+ signaling, and SNARE s in the modulation of Ca V 2.1 channel steady‐state inactivation</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PMC (PubMed Central)</source><creator>Serra, Selma Angèlica ; Gené, Gemma G ; Xabier Elorza‐Vidal ; José M. Fernández‐Fernández</creator><creatorcontrib>Serra, Selma Angèlica ; Gené, Gemma G ; Xabier Elorza‐Vidal ; José M. Fernández‐Fernández</creatorcontrib><description>Modulation of CaV2.1 channel activity plays a key role in interneuronal communication and synaptic plasticity. SNAREs interact with a specific synprint site at the second intracellular loop (LII‐III) of the CaV2.1 pore‐forming α1A subunit to optimize neurotransmitter release from presynaptic terminals by allowing secretory vesicles docking near the Ca2+ entry pathway, and by modulating the voltage dependence of channel steady‐state inactivation. Ca2+ influx through CaV2.1 also promotes channel inactivation. This process seems to involve Ca2+‐calmodulin interaction with two adjacent sites in the α1A carboxyl tail (C‐tail) (the IQ‐like motif and the Calmodulin‐Binding Domain (CBD) site), and contributes to long‐term potentiation and spatial learning and memory. Besides, binding of regulatory β subunits to the α interaction domain (AID) at the first intracellular loop (LI‐II) of α1A determines the degree of channel inactivation by both voltage and Ca2+. Here, we explore the cross talk between β subunits, Ca2+, and syntaxin‐1A‐modulated CaV2.1 inactivation, highlighting the α1A domains involved in such process. β3‐containing CaV2.1 channels show syntaxin‐1A‐modulated but no Ca2+‐dependent steady‐state inactivation. Conversely, β2a‐containing CaV2.1 channels show Ca2+‐dependent but not syntaxin‐1A‐modulated steady‐state inactivation. A LI‐II deletion confers Ca2+‐dependent inactivation and prevents modulation by syntaxin‐1A in β3‐containing CaV2.1 channels. Mutation of the IQ‐like motif, unlike CBD deletion, abolishes Ca2+‐dependent inactivation and confers modulation by syntaxin‐1A in β2a‐containing CaV2.1 channels. Altogether, these results suggest that LI‐II structural modifications determine the regulation of CaV2.1 steady‐state inactivation either by Ca2+ or by SNAREs but not by both.</description><identifier>EISSN: 2051-817X</identifier><identifier>DOI: 10.14814/phy2.13557</identifier><language>eng</language><publisher>Oxford: John Wiley &amp; Sons, Inc</publisher><subject>Calcium (intracellular) ; Calcium channels ; Calcium channels (voltage-gated) ; Calcium influx ; Calcium signalling ; Calcium-binding protein ; Calmodulin ; Channel gating ; Gene deletion ; Intracellular ; Intracellular signalling ; Neurotransmitter release ; Physiology ; Potentiation ; Secretory vesicles ; Spatial discrimination learning ; Spatial memory ; Synaptic plasticity ; Syntaxin</subject><ispartof>Physiological reports, 2018-01, Vol.6 (2)</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2007133452/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2007133452?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Serra, Selma Angèlica</creatorcontrib><creatorcontrib>Gené, Gemma G</creatorcontrib><creatorcontrib>Xabier Elorza‐Vidal</creatorcontrib><creatorcontrib>José M. Fernández‐Fernández</creatorcontrib><title>Cross talk between β subunits, intracellular Ca 2+ signaling, and SNARE s in the modulation of Ca V 2.1 channel steady‐state inactivation</title><title>Physiological reports</title><description>Modulation of CaV2.1 channel activity plays a key role in interneuronal communication and synaptic plasticity. SNAREs interact with a specific synprint site at the second intracellular loop (LII‐III) of the CaV2.1 pore‐forming α1A subunit to optimize neurotransmitter release from presynaptic terminals by allowing secretory vesicles docking near the Ca2+ entry pathway, and by modulating the voltage dependence of channel steady‐state inactivation. Ca2+ influx through CaV2.1 also promotes channel inactivation. This process seems to involve Ca2+‐calmodulin interaction with two adjacent sites in the α1A carboxyl tail (C‐tail) (the IQ‐like motif and the Calmodulin‐Binding Domain (CBD) site), and contributes to long‐term potentiation and spatial learning and memory. Besides, binding of regulatory β subunits to the α interaction domain (AID) at the first intracellular loop (LI‐II) of α1A determines the degree of channel inactivation by both voltage and Ca2+. Here, we explore the cross talk between β subunits, Ca2+, and syntaxin‐1A‐modulated CaV2.1 inactivation, highlighting the α1A domains involved in such process. β3‐containing CaV2.1 channels show syntaxin‐1A‐modulated but no Ca2+‐dependent steady‐state inactivation. Conversely, β2a‐containing CaV2.1 channels show Ca2+‐dependent but not syntaxin‐1A‐modulated steady‐state inactivation. A LI‐II deletion confers Ca2+‐dependent inactivation and prevents modulation by syntaxin‐1A in β3‐containing CaV2.1 channels. Mutation of the IQ‐like motif, unlike CBD deletion, abolishes Ca2+‐dependent inactivation and confers modulation by syntaxin‐1A in β2a‐containing CaV2.1 channels. Altogether, these results suggest that LI‐II structural modifications determine the regulation of CaV2.1 steady‐state inactivation either by Ca2+ or by SNAREs but not by both.</description><subject>Calcium (intracellular)</subject><subject>Calcium channels</subject><subject>Calcium channels (voltage-gated)</subject><subject>Calcium influx</subject><subject>Calcium signalling</subject><subject>Calcium-binding protein</subject><subject>Calmodulin</subject><subject>Channel gating</subject><subject>Gene deletion</subject><subject>Intracellular</subject><subject>Intracellular signalling</subject><subject>Neurotransmitter release</subject><subject>Physiology</subject><subject>Potentiation</subject><subject>Secretory vesicles</subject><subject>Spatial discrimination learning</subject><subject>Spatial memory</subject><subject>Synaptic plasticity</subject><subject>Syntaxin</subject><issn>2051-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzj1OAzEQBWALCYkIUnGBkShJgn92taFEqyAqioAQXTTZdbIOxg47Y1A6DkDBWTgIh-AkGMQBqF7zPb0nxLGSE1VMVXG27XZ6okxZVntioGWpxlNV3R-IIdFGSqmkMeeyGIi3uo9EwOgfYGn5xdoAnx9AaZmCYxqBC9xjY71PHnuoEfQpkFsH9C6sR4ChhZvri_kMKFPgzsJjbLNlFwPE1U_jDvIVaDoMwXogttjuvl7fiZFtLmHD7vnXH4n9FXqyw788FCeXs9v6arzt41OyxItNTH2epoWWslLGFKU2_1PfxdRZAw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Serra, Selma Angèlica</creator><creator>Gené, Gemma G</creator><creator>Xabier Elorza‐Vidal</creator><creator>José M. Fernández‐Fernández</creator><general>John Wiley &amp; Sons, Inc</general><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180101</creationdate><title>Cross talk between β subunits, intracellular Ca 2+ signaling, and SNARE s in the modulation of Ca V 2.1 channel steady‐state inactivation</title><author>Serra, Selma Angèlica ; Gené, Gemma G ; Xabier Elorza‐Vidal ; José M. Fernández‐Fernández</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20071334523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calcium (intracellular)</topic><topic>Calcium channels</topic><topic>Calcium channels (voltage-gated)</topic><topic>Calcium influx</topic><topic>Calcium signalling</topic><topic>Calcium-binding protein</topic><topic>Calmodulin</topic><topic>Channel gating</topic><topic>Gene deletion</topic><topic>Intracellular</topic><topic>Intracellular signalling</topic><topic>Neurotransmitter release</topic><topic>Physiology</topic><topic>Potentiation</topic><topic>Secretory vesicles</topic><topic>Spatial discrimination learning</topic><topic>Spatial memory</topic><topic>Synaptic plasticity</topic><topic>Syntaxin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serra, Selma Angèlica</creatorcontrib><creatorcontrib>Gené, Gemma G</creatorcontrib><creatorcontrib>Xabier Elorza‐Vidal</creatorcontrib><creatorcontrib>José M. Fernández‐Fernández</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Proquest Health &amp; Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Physiological reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serra, Selma Angèlica</au><au>Gené, Gemma G</au><au>Xabier Elorza‐Vidal</au><au>José M. Fernández‐Fernández</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross talk between β subunits, intracellular Ca 2+ signaling, and SNARE s in the modulation of Ca V 2.1 channel steady‐state inactivation</atitle><jtitle>Physiological reports</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><issue>2</issue><eissn>2051-817X</eissn><abstract>Modulation of CaV2.1 channel activity plays a key role in interneuronal communication and synaptic plasticity. SNAREs interact with a specific synprint site at the second intracellular loop (LII‐III) of the CaV2.1 pore‐forming α1A subunit to optimize neurotransmitter release from presynaptic terminals by allowing secretory vesicles docking near the Ca2+ entry pathway, and by modulating the voltage dependence of channel steady‐state inactivation. Ca2+ influx through CaV2.1 also promotes channel inactivation. This process seems to involve Ca2+‐calmodulin interaction with two adjacent sites in the α1A carboxyl tail (C‐tail) (the IQ‐like motif and the Calmodulin‐Binding Domain (CBD) site), and contributes to long‐term potentiation and spatial learning and memory. Besides, binding of regulatory β subunits to the α interaction domain (AID) at the first intracellular loop (LI‐II) of α1A determines the degree of channel inactivation by both voltage and Ca2+. Here, we explore the cross talk between β subunits, Ca2+, and syntaxin‐1A‐modulated CaV2.1 inactivation, highlighting the α1A domains involved in such process. β3‐containing CaV2.1 channels show syntaxin‐1A‐modulated but no Ca2+‐dependent steady‐state inactivation. Conversely, β2a‐containing CaV2.1 channels show Ca2+‐dependent but not syntaxin‐1A‐modulated steady‐state inactivation. A LI‐II deletion confers Ca2+‐dependent inactivation and prevents modulation by syntaxin‐1A in β3‐containing CaV2.1 channels. Mutation of the IQ‐like motif, unlike CBD deletion, abolishes Ca2+‐dependent inactivation and confers modulation by syntaxin‐1A in β2a‐containing CaV2.1 channels. Altogether, these results suggest that LI‐II structural modifications determine the regulation of CaV2.1 steady‐state inactivation either by Ca2+ or by SNAREs but not by both.</abstract><cop>Oxford</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.14814/phy2.13557</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2051-817X
ispartof Physiological reports, 2018-01, Vol.6 (2)
issn 2051-817X
language eng
recordid cdi_proquest_journals_2007133452
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3); PMC (PubMed Central)
subjects Calcium (intracellular)
Calcium channels
Calcium channels (voltage-gated)
Calcium influx
Calcium signalling
Calcium-binding protein
Calmodulin
Channel gating
Gene deletion
Intracellular
Intracellular signalling
Neurotransmitter release
Physiology
Potentiation
Secretory vesicles
Spatial discrimination learning
Spatial memory
Synaptic plasticity
Syntaxin
title Cross talk between β subunits, intracellular Ca 2+ signaling, and SNARE s in the modulation of Ca V 2.1 channel steady‐state inactivation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross%20talk%20between%20%CE%B2%20subunits,%20intracellular%20Ca%202+%20signaling,%20and%20SNARE%20s%20in%20the%20modulation%20of%20Ca%20V%202.1%20channel%20steady%E2%80%90state%20inactivation&rft.jtitle=Physiological%20reports&rft.au=Serra,%20Selma%20Ang%C3%A8lica&rft.date=2018-01-01&rft.volume=6&rft.issue=2&rft.eissn=2051-817X&rft_id=info:doi/10.14814/phy2.13557&rft_dat=%3Cproquest%3E2007133452%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20071334523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2007133452&rft_id=info:pmid/&rfr_iscdi=true