Loading…

Rapid estrogen receptor-a signaling mediated by ERK activation regulates vascular tone in male and ovary-intact female mice

Estrogen has been shown to affect vascular reactivity. Here, we assessed the estrogen receptor-α (ERα) dependency of estrogenic effects on vasorelaxation via a rapid nongenomic pathway in both male and ovary-intact female mice. We compared the effect of a primary estrogen, 17β-estradiol (E2) or 4,4&...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Heart and circulatory physiology 2018-02, Vol.314 (2), p.H330
Main Authors: Kim, Seong Chul, Boese, Austin C, Moore, Matthew H, Cleland, Rea M, Chang, Lin, Delafontaine, Patrice, Yin, Ke-Jie, Lee, Jean-Pyo, Hamblin, Milton H
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Estrogen has been shown to affect vascular reactivity. Here, we assessed the estrogen receptor-α (ERα) dependency of estrogenic effects on vasorelaxation via a rapid nongenomic pathway in both male and ovary-intact female mice. We compared the effect of a primary estrogen, 17β-estradiol (E2) or 4,4',4"-(4-propyl-[1H]pyrazole-1,3,5-triyl)tris-phenol (PPT; selective ERα agonist). We found that E2 and PPT induced greater aortic relaxation in female mice than in male mice, indicating ERα mediation, which was further validated by using ERα antagonism. Treatment with 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP dihydrochloride; ERα antagonist) attenuated PPT-mediated vessel relaxation in both sexes. ERα-mediated vessel relaxation was further validated by the absence of significant PPT-mediated relaxation in aortas isolated from ERα knockout mice. Treatment with a specific ERK inhibitor, PD-98059, reduced E2-induced vessel relaxation in both sexes but to a lesser extent in female mice. Furthermore, PD-98059 prevented PPT-induced vessel relaxation in both sexes. Both E2 and PPT treatment activated ERK as early as 5-10 min, which was attenuated by PD-98059 in aortic tissue, cultured primary vascular smooth muscle cells (VSMCs), and endothelial cells (ECs). Aortic rings denuded of endothelium showed no differences in vessel relaxation after E2 or PPT treatment, implicating a role of ECs in the observed sex differences. Here, our results are unique to show estrogen-stimulated rapid ERα signaling mediated by ERK activation in aortic tissue, as well as VSMCs and ECs in vitro, in regulating vascular function by using side-by-side comparisons in male and ovary-intact female mice in response to E2 or PPT.
ISSN:0363-6135
1522-1539