Loading…
On applying support vector machines to a user authentication method using surface electromyogram signals
At present, mobile devices such as tablet-type PCs and smart phones have widely penetrated into our daily lives. Therefore, an authentication method that prevents shoulder surfing is needed. We are investigating a new user authentication method for mobile devices that uses surface electromyogram (s-...
Saved in:
Published in: | Artificial life and robotics 2018-03, Vol.23 (1), p.87-93 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | At present, mobile devices such as tablet-type PCs and smart phones have widely penetrated into our daily lives. Therefore, an authentication method that prevents shoulder surfing is needed. We are investigating a new user authentication method for mobile devices that uses surface electromyogram (s-EMG) signals, not screen touching. The s-EMG signals, which are detected over the skin surface, are generated by the electrical activity of muscle fibers during contraction. Muscle movement can be differentiated by analyzing the s-EMG. Taking advantage of the characteristics, we proposed a method that uses a list of gestures as a password in the previous study. In this paper, we introduced support vector machines (SVM) for improvement of the method of identifying gestures. A series of experiments was carried out to evaluate the performance of the SVM based method as a gesture classifier and we also discussed its security. |
---|---|
ISSN: | 1433-5298 1614-7456 |
DOI: | 10.1007/s10015-017-0404-z |