Loading…

Cauchy stresses and vibration frequencies for the instability parameters of dielectric elastomer actuators

ABSTRACT An analysis of the effect of Cauchy stresses, vibration frequency response, and instability on the transient dynamic response of step‐voltage‐driven dielectric elastomer actuators (DEAs) is presented in this paper. Material nonlinearities associated with the hyperelastic constitutive law ar...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2018-06, Vol.135 (21), p.n/a
Main Authors: Kim, Tae‐Jong, Liu, Yanju, Leng, Jinsong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2975-5154259dec0979f26546e5e9781d0b2421fb734facd361d0c06b84d50dc786363
cites cdi_FETCH-LOGICAL-c2975-5154259dec0979f26546e5e9781d0b2421fb734facd361d0c06b84d50dc786363
container_end_page n/a
container_issue 21
container_start_page
container_title Journal of applied polymer science
container_volume 135
creator Kim, Tae‐Jong
Liu, Yanju
Leng, Jinsong
description ABSTRACT An analysis of the effect of Cauchy stresses, vibration frequency response, and instability on the transient dynamic response of step‐voltage‐driven dielectric elastomer actuators (DEAs) is presented in this paper. Material nonlinearities associated with the hyperelastic constitutive law are taken into account, and the membrane is assumed to be made of an isotropic, homogeneous, and incompressible material. The results for the neo‐Hookean material model are further extended to analyze relatively complex multiparameter hyperelastic models (Mooney–Rivlin and Ogden) that are often employed for investigating the behavior of DEAs. The dynamic instability parameters are predicted using energy‐based extraction of static instability and validated by the response of the material in the vicinity of the dynamic instability. The natural modes of the membrane are used to approximate the nonlinear deformation field using the Galerkin method. A detailed parametric analysis of the equations of motion for the prestretched membrane shows the natural frequencies and mode shapes of the membrane and the strong influence of the stretching ratios and material parameters on the linear and nonlinear oscillations of the membrane. The results of the present investigation show the electric field–frequency relations, resonance curves, and bifurcation diagrams using the nonlinear dynamics of DEAs subjected to electrical loads. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46215.
doi_str_mv 10.1002/app.46215
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2008174104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008174104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2975-5154259dec0979f26546e5e9781d0b2421fb734facd361d0c06b84d50dc786363</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqUw8A0sMTGktR3bScaq4p9UiQ4wW45zVl2lSbAdUL49hrAyne7e7-6eHkK3lKwoIWyth2HFJaPiDC0oqYosNeU5WiSNZmVViUt0FcKREEoFkQt03OrRHCYcoocQIGDdNfjT1V5H13fYevgYoTMuKbb3OB4Auy5EXbvWxQkP2usTRPAB9xY3Dlow0TuDodUh9ifwWJs46tj7cI0urG4D3PzVJXp_fHjbPme716eX7WaXGVYVIhNUcCaqBkyyX1kmBZcgoCpK2pCacUZtXeTcatPkMo0MkXXJG0EaU5Qyl_kS3c13B98n8yGqYz_6Lr1UjJCSFpwSnqj7mTK-D8GDVYN3J-0nRYn6iVKlKNVvlIldz-yXa2H6H1Sb_X7e-AbXX3ae</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008174104</pqid></control><display><type>article</type><title>Cauchy stresses and vibration frequencies for the instability parameters of dielectric elastomer actuators</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kim, Tae‐Jong ; Liu, Yanju ; Leng, Jinsong</creator><creatorcontrib>Kim, Tae‐Jong ; Liu, Yanju ; Leng, Jinsong</creatorcontrib><description>ABSTRACT An analysis of the effect of Cauchy stresses, vibration frequency response, and instability on the transient dynamic response of step‐voltage‐driven dielectric elastomer actuators (DEAs) is presented in this paper. Material nonlinearities associated with the hyperelastic constitutive law are taken into account, and the membrane is assumed to be made of an isotropic, homogeneous, and incompressible material. The results for the neo‐Hookean material model are further extended to analyze relatively complex multiparameter hyperelastic models (Mooney–Rivlin and Ogden) that are often employed for investigating the behavior of DEAs. The dynamic instability parameters are predicted using energy‐based extraction of static instability and validated by the response of the material in the vicinity of the dynamic instability. The natural modes of the membrane are used to approximate the nonlinear deformation field using the Galerkin method. A detailed parametric analysis of the equations of motion for the prestretched membrane shows the natural frequencies and mode shapes of the membrane and the strong influence of the stretching ratios and material parameters on the linear and nonlinear oscillations of the membrane. The results of the present investigation show the electric field–frequency relations, resonance curves, and bifurcation diagrams using the nonlinear dynamics of DEAs subjected to electrical loads. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46215.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.46215</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Actuators ; Bifurcations ; Computational fluid dynamics ; Deformation ; Dynamic response ; Dynamic stability ; Elastomers ; Electrical loads ; Energy consumption ; Equations of motion ; Frequency response ; Frequency stability ; Galerkin method ; Isotropic material ; Materials science ; Mathematical models ; membranes ; Nonlinear dynamics ; Parametric analysis ; Polymers ; sensors and actuators ; Stability analysis ; Step voltage ; Stresses ; Vibration analysis</subject><ispartof>Journal of applied polymer science, 2018-06, Vol.135 (21), p.n/a</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2975-5154259dec0979f26546e5e9781d0b2421fb734facd361d0c06b84d50dc786363</citedby><cites>FETCH-LOGICAL-c2975-5154259dec0979f26546e5e9781d0b2421fb734facd361d0c06b84d50dc786363</cites><orcidid>0000-0003-1006-035X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Tae‐Jong</creatorcontrib><creatorcontrib>Liu, Yanju</creatorcontrib><creatorcontrib>Leng, Jinsong</creatorcontrib><title>Cauchy stresses and vibration frequencies for the instability parameters of dielectric elastomer actuators</title><title>Journal of applied polymer science</title><description>ABSTRACT An analysis of the effect of Cauchy stresses, vibration frequency response, and instability on the transient dynamic response of step‐voltage‐driven dielectric elastomer actuators (DEAs) is presented in this paper. Material nonlinearities associated with the hyperelastic constitutive law are taken into account, and the membrane is assumed to be made of an isotropic, homogeneous, and incompressible material. The results for the neo‐Hookean material model are further extended to analyze relatively complex multiparameter hyperelastic models (Mooney–Rivlin and Ogden) that are often employed for investigating the behavior of DEAs. The dynamic instability parameters are predicted using energy‐based extraction of static instability and validated by the response of the material in the vicinity of the dynamic instability. The natural modes of the membrane are used to approximate the nonlinear deformation field using the Galerkin method. A detailed parametric analysis of the equations of motion for the prestretched membrane shows the natural frequencies and mode shapes of the membrane and the strong influence of the stretching ratios and material parameters on the linear and nonlinear oscillations of the membrane. The results of the present investigation show the electric field–frequency relations, resonance curves, and bifurcation diagrams using the nonlinear dynamics of DEAs subjected to electrical loads. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46215.</description><subject>Actuators</subject><subject>Bifurcations</subject><subject>Computational fluid dynamics</subject><subject>Deformation</subject><subject>Dynamic response</subject><subject>Dynamic stability</subject><subject>Elastomers</subject><subject>Electrical loads</subject><subject>Energy consumption</subject><subject>Equations of motion</subject><subject>Frequency response</subject><subject>Frequency stability</subject><subject>Galerkin method</subject><subject>Isotropic material</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>membranes</subject><subject>Nonlinear dynamics</subject><subject>Parametric analysis</subject><subject>Polymers</subject><subject>sensors and actuators</subject><subject>Stability analysis</subject><subject>Step voltage</subject><subject>Stresses</subject><subject>Vibration analysis</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqUw8A0sMTGktR3bScaq4p9UiQ4wW45zVl2lSbAdUL49hrAyne7e7-6eHkK3lKwoIWyth2HFJaPiDC0oqYosNeU5WiSNZmVViUt0FcKREEoFkQt03OrRHCYcoocQIGDdNfjT1V5H13fYevgYoTMuKbb3OB4Auy5EXbvWxQkP2usTRPAB9xY3Dlow0TuDodUh9ifwWJs46tj7cI0urG4D3PzVJXp_fHjbPme716eX7WaXGVYVIhNUcCaqBkyyX1kmBZcgoCpK2pCacUZtXeTcatPkMo0MkXXJG0EaU5Qyl_kS3c13B98n8yGqYz_6Lr1UjJCSFpwSnqj7mTK-D8GDVYN3J-0nRYn6iVKlKNVvlIldz-yXa2H6H1Sb_X7e-AbXX3ae</recordid><startdate>20180605</startdate><enddate>20180605</enddate><creator>Kim, Tae‐Jong</creator><creator>Liu, Yanju</creator><creator>Leng, Jinsong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1006-035X</orcidid></search><sort><creationdate>20180605</creationdate><title>Cauchy stresses and vibration frequencies for the instability parameters of dielectric elastomer actuators</title><author>Kim, Tae‐Jong ; Liu, Yanju ; Leng, Jinsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2975-5154259dec0979f26546e5e9781d0b2421fb734facd361d0c06b84d50dc786363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuators</topic><topic>Bifurcations</topic><topic>Computational fluid dynamics</topic><topic>Deformation</topic><topic>Dynamic response</topic><topic>Dynamic stability</topic><topic>Elastomers</topic><topic>Electrical loads</topic><topic>Energy consumption</topic><topic>Equations of motion</topic><topic>Frequency response</topic><topic>Frequency stability</topic><topic>Galerkin method</topic><topic>Isotropic material</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>membranes</topic><topic>Nonlinear dynamics</topic><topic>Parametric analysis</topic><topic>Polymers</topic><topic>sensors and actuators</topic><topic>Stability analysis</topic><topic>Step voltage</topic><topic>Stresses</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Tae‐Jong</creatorcontrib><creatorcontrib>Liu, Yanju</creatorcontrib><creatorcontrib>Leng, Jinsong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Tae‐Jong</au><au>Liu, Yanju</au><au>Leng, Jinsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cauchy stresses and vibration frequencies for the instability parameters of dielectric elastomer actuators</atitle><jtitle>Journal of applied polymer science</jtitle><date>2018-06-05</date><risdate>2018</risdate><volume>135</volume><issue>21</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>ABSTRACT An analysis of the effect of Cauchy stresses, vibration frequency response, and instability on the transient dynamic response of step‐voltage‐driven dielectric elastomer actuators (DEAs) is presented in this paper. Material nonlinearities associated with the hyperelastic constitutive law are taken into account, and the membrane is assumed to be made of an isotropic, homogeneous, and incompressible material. The results for the neo‐Hookean material model are further extended to analyze relatively complex multiparameter hyperelastic models (Mooney–Rivlin and Ogden) that are often employed for investigating the behavior of DEAs. The dynamic instability parameters are predicted using energy‐based extraction of static instability and validated by the response of the material in the vicinity of the dynamic instability. The natural modes of the membrane are used to approximate the nonlinear deformation field using the Galerkin method. A detailed parametric analysis of the equations of motion for the prestretched membrane shows the natural frequencies and mode shapes of the membrane and the strong influence of the stretching ratios and material parameters on the linear and nonlinear oscillations of the membrane. The results of the present investigation show the electric field–frequency relations, resonance curves, and bifurcation diagrams using the nonlinear dynamics of DEAs subjected to electrical loads. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46215.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/app.46215</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1006-035X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2018-06, Vol.135 (21), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2008174104
source Wiley-Blackwell Read & Publish Collection
subjects Actuators
Bifurcations
Computational fluid dynamics
Deformation
Dynamic response
Dynamic stability
Elastomers
Electrical loads
Energy consumption
Equations of motion
Frequency response
Frequency stability
Galerkin method
Isotropic material
Materials science
Mathematical models
membranes
Nonlinear dynamics
Parametric analysis
Polymers
sensors and actuators
Stability analysis
Step voltage
Stresses
Vibration analysis
title Cauchy stresses and vibration frequencies for the instability parameters of dielectric elastomer actuators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cauchy%20stresses%20and%20vibration%20frequencies%20for%20the%20instability%20parameters%20of%20dielectric%20elastomer%20actuators&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Kim,%20Tae%E2%80%90Jong&rft.date=2018-06-05&rft.volume=135&rft.issue=21&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.46215&rft_dat=%3Cproquest_cross%3E2008174104%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2975-5154259dec0979f26546e5e9781d0b2421fb734facd361d0c06b84d50dc786363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2008174104&rft_id=info:pmid/&rfr_iscdi=true