Loading…

Electrochemical analysis of graphene/Mo9Se11 nanocomposites towards energy storage application

This paper essentially analyses graphene/Mo 9 Se 11 nanocomposites routes to supercapacitor applications which is one of the prominent devices for high power storage. Graphene and Mo 9 Se 11 are coupled together by attrition followed by ultrasonification. The reduction of graphene oxide to graphene...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2018-05, Vol.29 (9), p.7885-7892
Main Authors: Balasubramanian, V., Celina Selvakumari, J., Dhanalakshmi, J., Ahila, M., Pathinettam Padiyan, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-4efcd37f1cc1fe4c679a3eddbd4f6252de6611a7fd7af6f9a31d113ad13fd52a3
cites cdi_FETCH-LOGICAL-c316t-4efcd37f1cc1fe4c679a3eddbd4f6252de6611a7fd7af6f9a31d113ad13fd52a3
container_end_page 7892
container_issue 9
container_start_page 7885
container_title Journal of materials science. Materials in electronics
container_volume 29
creator Balasubramanian, V.
Celina Selvakumari, J.
Dhanalakshmi, J.
Ahila, M.
Pathinettam Padiyan, D.
description This paper essentially analyses graphene/Mo 9 Se 11 nanocomposites routes to supercapacitor applications which is one of the prominent devices for high power storage. Graphene and Mo 9 Se 11 are coupled together by attrition followed by ultrasonification. The reduction of graphene oxide to graphene as well as the coupling of graphene with Mo 9 Se 11 and the formation of their nanocomposites is confirmed through X-ray diffraction pattern, FTIR spectra and Raman spectra analysis of these materials. The surface morphology of the entire samples is imaged through SEM while their electrochemical performances are analysed by cyclic voltametry and electrochemical impedance spectroscopy. The nanocomposite, having three parts of Mo 9 Se 11 and one part of graphene, displayed the higher areal capacitance of 438 mF at a scan rate of 5 mV s −1 . Finally, the solution resistance and charge transfer resistance are obtained from EIS measurements and reported.
doi_str_mv 10.1007/s10854-018-8788-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2008199191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008199191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4efcd37f1cc1fe4c679a3eddbd4f6252de6611a7fd7af6f9a31d113ad13fd52a3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB13Fyk7ZJlzKMD1BcqODKEPPodOg0Nekg8-_NUMGVq7s43zlwP4QugV4DpWKRgMqyIBQkkUJKIo7QDErBSSHZ-zGa0boUpCgZO0VnKW0opVXB5Qx9rDpnxhjM2m1bozuse93tU5tw8LiJeli73i2eQv3iAHCv-2DCdgipHV3CY_jW0SackdjscRpD1I3Dehi6vDW2oT9HJ153yV383jl6u129Lu_J4_Pdw_LmkRgO1UgK543lwoMx4F1hKlFr7qz9tIWvWMmsqyoALbwV2lc-h2ABuLbAvS2Z5nN0Ne0OMXztXBrVJuxifiUpRqmEuoYaMgUTZWJIKTqvhthuddwroOqgUU0aVdaoDhqVyB02dVJm-8bFv-X_Sz-Gc3gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008199191</pqid></control><display><type>article</type><title>Electrochemical analysis of graphene/Mo9Se11 nanocomposites towards energy storage application</title><source>Springer Link</source><creator>Balasubramanian, V. ; Celina Selvakumari, J. ; Dhanalakshmi, J. ; Ahila, M. ; Pathinettam Padiyan, D.</creator><creatorcontrib>Balasubramanian, V. ; Celina Selvakumari, J. ; Dhanalakshmi, J. ; Ahila, M. ; Pathinettam Padiyan, D.</creatorcontrib><description>This paper essentially analyses graphene/Mo 9 Se 11 nanocomposites routes to supercapacitor applications which is one of the prominent devices for high power storage. Graphene and Mo 9 Se 11 are coupled together by attrition followed by ultrasonification. The reduction of graphene oxide to graphene as well as the coupling of graphene with Mo 9 Se 11 and the formation of their nanocomposites is confirmed through X-ray diffraction pattern, FTIR spectra and Raman spectra analysis of these materials. The surface morphology of the entire samples is imaged through SEM while their electrochemical performances are analysed by cyclic voltametry and electrochemical impedance spectroscopy. The nanocomposite, having three parts of Mo 9 Se 11 and one part of graphene, displayed the higher areal capacitance of 438 mF at a scan rate of 5 mV s −1 . Finally, the solution resistance and charge transfer resistance are obtained from EIS measurements and reported.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-018-8788-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Charge transfer ; Chemistry and Materials Science ; Comminution ; Diffraction ; Diffraction patterns ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Energy storage ; Graphene ; Materials Science ; Nanocomposites ; Optical and Electronic Materials ; Raman spectra ; Spectrum analysis</subject><ispartof>Journal of materials science. Materials in electronics, 2018-05, Vol.29 (9), p.7885-7892</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4efcd37f1cc1fe4c679a3eddbd4f6252de6611a7fd7af6f9a31d113ad13fd52a3</citedby><cites>FETCH-LOGICAL-c316t-4efcd37f1cc1fe4c679a3eddbd4f6252de6611a7fd7af6f9a31d113ad13fd52a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Balasubramanian, V.</creatorcontrib><creatorcontrib>Celina Selvakumari, J.</creatorcontrib><creatorcontrib>Dhanalakshmi, J.</creatorcontrib><creatorcontrib>Ahila, M.</creatorcontrib><creatorcontrib>Pathinettam Padiyan, D.</creatorcontrib><title>Electrochemical analysis of graphene/Mo9Se11 nanocomposites towards energy storage application</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>This paper essentially analyses graphene/Mo 9 Se 11 nanocomposites routes to supercapacitor applications which is one of the prominent devices for high power storage. Graphene and Mo 9 Se 11 are coupled together by attrition followed by ultrasonification. The reduction of graphene oxide to graphene as well as the coupling of graphene with Mo 9 Se 11 and the formation of their nanocomposites is confirmed through X-ray diffraction pattern, FTIR spectra and Raman spectra analysis of these materials. The surface morphology of the entire samples is imaged through SEM while their electrochemical performances are analysed by cyclic voltametry and electrochemical impedance spectroscopy. The nanocomposite, having three parts of Mo 9 Se 11 and one part of graphene, displayed the higher areal capacitance of 438 mF at a scan rate of 5 mV s −1 . Finally, the solution resistance and charge transfer resistance are obtained from EIS measurements and reported.</description><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Comminution</subject><subject>Diffraction</subject><subject>Diffraction patterns</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Optical and Electronic Materials</subject><subject>Raman spectra</subject><subject>Spectrum analysis</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcB13Fyk7ZJlzKMD1BcqODKEPPodOg0Nekg8-_NUMGVq7s43zlwP4QugV4DpWKRgMqyIBQkkUJKIo7QDErBSSHZ-zGa0boUpCgZO0VnKW0opVXB5Qx9rDpnxhjM2m1bozuse93tU5tw8LiJeli73i2eQv3iAHCv-2DCdgipHV3CY_jW0SackdjscRpD1I3Dehi6vDW2oT9HJ153yV383jl6u129Lu_J4_Pdw_LmkRgO1UgK543lwoMx4F1hKlFr7qz9tIWvWMmsqyoALbwV2lc-h2ABuLbAvS2Z5nN0Ne0OMXztXBrVJuxifiUpRqmEuoYaMgUTZWJIKTqvhthuddwroOqgUU0aVdaoDhqVyB02dVJm-8bFv-X_Sz-Gc3gQ</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Balasubramanian, V.</creator><creator>Celina Selvakumari, J.</creator><creator>Dhanalakshmi, J.</creator><creator>Ahila, M.</creator><creator>Pathinettam Padiyan, D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20180501</creationdate><title>Electrochemical analysis of graphene/Mo9Se11 nanocomposites towards energy storage application</title><author>Balasubramanian, V. ; Celina Selvakumari, J. ; Dhanalakshmi, J. ; Ahila, M. ; Pathinettam Padiyan, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4efcd37f1cc1fe4c679a3eddbd4f6252de6611a7fd7af6f9a31d113ad13fd52a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Comminution</topic><topic>Diffraction</topic><topic>Diffraction patterns</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Optical and Electronic Materials</topic><topic>Raman spectra</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balasubramanian, V.</creatorcontrib><creatorcontrib>Celina Selvakumari, J.</creatorcontrib><creatorcontrib>Dhanalakshmi, J.</creatorcontrib><creatorcontrib>Ahila, M.</creatorcontrib><creatorcontrib>Pathinettam Padiyan, D.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balasubramanian, V.</au><au>Celina Selvakumari, J.</au><au>Dhanalakshmi, J.</au><au>Ahila, M.</au><au>Pathinettam Padiyan, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical analysis of graphene/Mo9Se11 nanocomposites towards energy storage application</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>29</volume><issue>9</issue><spage>7885</spage><epage>7892</epage><pages>7885-7892</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>This paper essentially analyses graphene/Mo 9 Se 11 nanocomposites routes to supercapacitor applications which is one of the prominent devices for high power storage. Graphene and Mo 9 Se 11 are coupled together by attrition followed by ultrasonification. The reduction of graphene oxide to graphene as well as the coupling of graphene with Mo 9 Se 11 and the formation of their nanocomposites is confirmed through X-ray diffraction pattern, FTIR spectra and Raman spectra analysis of these materials. The surface morphology of the entire samples is imaged through SEM while their electrochemical performances are analysed by cyclic voltametry and electrochemical impedance spectroscopy. The nanocomposite, having three parts of Mo 9 Se 11 and one part of graphene, displayed the higher areal capacitance of 438 mF at a scan rate of 5 mV s −1 . Finally, the solution resistance and charge transfer resistance are obtained from EIS measurements and reported.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-018-8788-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2018-05, Vol.29 (9), p.7885-7892
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2008199191
source Springer Link
subjects Characterization and Evaluation of Materials
Charge transfer
Chemistry and Materials Science
Comminution
Diffraction
Diffraction patterns
Electrochemical analysis
Electrochemical impedance spectroscopy
Energy storage
Graphene
Materials Science
Nanocomposites
Optical and Electronic Materials
Raman spectra
Spectrum analysis
title Electrochemical analysis of graphene/Mo9Se11 nanocomposites towards energy storage application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20analysis%20of%20graphene/Mo9Se11%20nanocomposites%20towards%20energy%20storage%20application&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Balasubramanian,%20V.&rft.date=2018-05-01&rft.volume=29&rft.issue=9&rft.spage=7885&rft.epage=7892&rft.pages=7885-7892&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-018-8788-7&rft_dat=%3Cproquest_cross%3E2008199191%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-4efcd37f1cc1fe4c679a3eddbd4f6252de6611a7fd7af6f9a31d113ad13fd52a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2008199191&rft_id=info:pmid/&rfr_iscdi=true