Loading…
PATH-DEPENDENT EQUATIONS AND VISCOSITY SOLUTIONS IN INFINITE DIMENSION
Path-dependent partial differential equations (PPDEs) are natural objects to study when one deals with non-Markovian models. Recently, after the introduction of the so-called pathwise (or functional or Dupire) calculus [see Dupire (2009)], in the case of finite-dimensional underlying space various p...
Saved in:
Published in: | The Annals of probability 2018-01, Vol.46 (1), p.126-174 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c317t-a11651c70692a4aa133f5671754bd0f0bbdd2478eac58dea4efa419bcdf3b9c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c317t-a11651c70692a4aa133f5671754bd0f0bbdd2478eac58dea4efa419bcdf3b9c3 |
container_end_page | 174 |
container_issue | 1 |
container_start_page | 126 |
container_title | The Annals of probability |
container_volume | 46 |
creator | Cosso, Andrea Federico, Salvatore Gozzi, Fausto Rosestolato, Mauro Touzi, Nizar |
description | Path-dependent partial differential equations (PPDEs) are natural objects to study when one deals with non-Markovian models. Recently, after the introduction of the so-called pathwise (or functional or Dupire) calculus [see Dupire (2009)], in the case of finite-dimensional underlying space various papers have been devoted to studying the well-posedness of such kind of equations, both from the point of view of regular solutions [see, e.g., Dupire (2009) and Cont (2016) Stochastic Integration by Parts and Functional Itô Calculus 115–207, Birkhäuser] and viscosity solutions [see, e.g., Ekren et al. (2014) Ann. Probab. 42 204–236]. In this paper, motivated by the study of models driven by path-dependent stochastic PDEs, we give a first well-posedness result for viscosity solutions of PPDEs when the underlying space is a separable Hilbert space. We also observe that, in contrast with the finite-dimensional case, our well-posedness result, even in the Markovian case, applies to equations which cannot be treated, up to now, with the known theory of viscosity solutions. |
doi_str_mv | 10.1214/17-AOP1181 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2008894027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26358670</jstor_id><sourcerecordid>26358670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-a11651c70692a4aa133f5671754bd0f0bbdd2478eac58dea4efa419bcdf3b9c3</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKcvvgsF34RobpIm6WNZUxeY7aSd6FNJv8Chdibbg_-9lQ7hwoHDj3O4B6FrIPdAgT-AxHG-BlBwgmYUhMIq4q-naEZIBBhkpM7RhfdbQoiQks9Quo7LJU70WmeJzspAP2_i0uRZEcRZEryYYpEXpnwLiny1mXyTjZeazJQ6SMyTzorRvkRnvf3w3dVR56hMdblY4lX-aBbxCjcM5B5bABFCI4mIqOXWAmN9KCTIkNct6Uldty3lUnW2CVXbWd71lkNUN23P6qhhc3Q7xe7c8H3o_L7aDgf3NTZWlBA1_kqoHKm7iWrc4L3r-mrn3j-t-6mAVH8zVSCr40wjfDPBW78f3D9JBQuVkIT9AtN1XUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008894027</pqid></control><display><type>article</type><title>PATH-DEPENDENT EQUATIONS AND VISCOSITY SOLUTIONS IN INFINITE DIMENSION</title><source>JSTOR Journals and Primary Sources</source><creator>Cosso, Andrea ; Federico, Salvatore ; Gozzi, Fausto ; Rosestolato, Mauro ; Touzi, Nizar</creator><creatorcontrib>Cosso, Andrea ; Federico, Salvatore ; Gozzi, Fausto ; Rosestolato, Mauro ; Touzi, Nizar</creatorcontrib><description>Path-dependent partial differential equations (PPDEs) are natural objects to study when one deals with non-Markovian models. Recently, after the introduction of the so-called pathwise (or functional or Dupire) calculus [see Dupire (2009)], in the case of finite-dimensional underlying space various papers have been devoted to studying the well-posedness of such kind of equations, both from the point of view of regular solutions [see, e.g., Dupire (2009) and Cont (2016) Stochastic Integration by Parts and Functional Itô Calculus 115–207, Birkhäuser] and viscosity solutions [see, e.g., Ekren et al. (2014) Ann. Probab. 42 204–236]. In this paper, motivated by the study of models driven by path-dependent stochastic PDEs, we give a first well-posedness result for viscosity solutions of PPDEs when the underlying space is a separable Hilbert space. We also observe that, in contrast with the finite-dimensional case, our well-posedness result, even in the Markovian case, applies to equations which cannot be treated, up to now, with the known theory of viscosity solutions.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/17-AOP1181</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Calculus ; Hilbert space ; Markov chains ; Nonlinear equations ; Partial differential equations ; Stochastic models ; Studies ; Viscosity ; Well posed problems</subject><ispartof>The Annals of probability, 2018-01, Vol.46 (1), p.126-174</ispartof><rights>Institute of Mathematical Statistics, 2018</rights><rights>Copyright Institute of Mathematical Statistics Jan 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-a11651c70692a4aa133f5671754bd0f0bbdd2478eac58dea4efa419bcdf3b9c3</citedby><cites>FETCH-LOGICAL-c317t-a11651c70692a4aa133f5671754bd0f0bbdd2478eac58dea4efa419bcdf3b9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26358670$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26358670$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Cosso, Andrea</creatorcontrib><creatorcontrib>Federico, Salvatore</creatorcontrib><creatorcontrib>Gozzi, Fausto</creatorcontrib><creatorcontrib>Rosestolato, Mauro</creatorcontrib><creatorcontrib>Touzi, Nizar</creatorcontrib><title>PATH-DEPENDENT EQUATIONS AND VISCOSITY SOLUTIONS IN INFINITE DIMENSION</title><title>The Annals of probability</title><description>Path-dependent partial differential equations (PPDEs) are natural objects to study when one deals with non-Markovian models. Recently, after the introduction of the so-called pathwise (or functional or Dupire) calculus [see Dupire (2009)], in the case of finite-dimensional underlying space various papers have been devoted to studying the well-posedness of such kind of equations, both from the point of view of regular solutions [see, e.g., Dupire (2009) and Cont (2016) Stochastic Integration by Parts and Functional Itô Calculus 115–207, Birkhäuser] and viscosity solutions [see, e.g., Ekren et al. (2014) Ann. Probab. 42 204–236]. In this paper, motivated by the study of models driven by path-dependent stochastic PDEs, we give a first well-posedness result for viscosity solutions of PPDEs when the underlying space is a separable Hilbert space. We also observe that, in contrast with the finite-dimensional case, our well-posedness result, even in the Markovian case, applies to equations which cannot be treated, up to now, with the known theory of viscosity solutions.</description><subject>Calculus</subject><subject>Hilbert space</subject><subject>Markov chains</subject><subject>Nonlinear equations</subject><subject>Partial differential equations</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Viscosity</subject><subject>Well posed problems</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kN1LwzAUxYMoOKcvvgsF34RobpIm6WNZUxeY7aSd6FNJv8Chdibbg_-9lQ7hwoHDj3O4B6FrIPdAgT-AxHG-BlBwgmYUhMIq4q-naEZIBBhkpM7RhfdbQoiQks9Quo7LJU70WmeJzspAP2_i0uRZEcRZEryYYpEXpnwLiny1mXyTjZeazJQ6SMyTzorRvkRnvf3w3dVR56hMdblY4lX-aBbxCjcM5B5bABFCI4mIqOXWAmN9KCTIkNct6Uldty3lUnW2CVXbWd71lkNUN23P6qhhc3Q7xe7c8H3o_L7aDgf3NTZWlBA1_kqoHKm7iWrc4L3r-mrn3j-t-6mAVH8zVSCr40wjfDPBW78f3D9JBQuVkIT9AtN1XUI</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Cosso, Andrea</creator><creator>Federico, Salvatore</creator><creator>Gozzi, Fausto</creator><creator>Rosestolato, Mauro</creator><creator>Touzi, Nizar</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20180101</creationdate><title>PATH-DEPENDENT EQUATIONS AND VISCOSITY SOLUTIONS IN INFINITE DIMENSION</title><author>Cosso, Andrea ; Federico, Salvatore ; Gozzi, Fausto ; Rosestolato, Mauro ; Touzi, Nizar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-a11651c70692a4aa133f5671754bd0f0bbdd2478eac58dea4efa419bcdf3b9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calculus</topic><topic>Hilbert space</topic><topic>Markov chains</topic><topic>Nonlinear equations</topic><topic>Partial differential equations</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Viscosity</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cosso, Andrea</creatorcontrib><creatorcontrib>Federico, Salvatore</creatorcontrib><creatorcontrib>Gozzi, Fausto</creatorcontrib><creatorcontrib>Rosestolato, Mauro</creatorcontrib><creatorcontrib>Touzi, Nizar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cosso, Andrea</au><au>Federico, Salvatore</au><au>Gozzi, Fausto</au><au>Rosestolato, Mauro</au><au>Touzi, Nizar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PATH-DEPENDENT EQUATIONS AND VISCOSITY SOLUTIONS IN INFINITE DIMENSION</atitle><jtitle>The Annals of probability</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>46</volume><issue>1</issue><spage>126</spage><epage>174</epage><pages>126-174</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>Path-dependent partial differential equations (PPDEs) are natural objects to study when one deals with non-Markovian models. Recently, after the introduction of the so-called pathwise (or functional or Dupire) calculus [see Dupire (2009)], in the case of finite-dimensional underlying space various papers have been devoted to studying the well-posedness of such kind of equations, both from the point of view of regular solutions [see, e.g., Dupire (2009) and Cont (2016) Stochastic Integration by Parts and Functional Itô Calculus 115–207, Birkhäuser] and viscosity solutions [see, e.g., Ekren et al. (2014) Ann. Probab. 42 204–236]. In this paper, motivated by the study of models driven by path-dependent stochastic PDEs, we give a first well-posedness result for viscosity solutions of PPDEs when the underlying space is a separable Hilbert space. We also observe that, in contrast with the finite-dimensional case, our well-posedness result, even in the Markovian case, applies to equations which cannot be treated, up to now, with the known theory of viscosity solutions.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/17-AOP1181</doi><tpages>49</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2018-01, Vol.46 (1), p.126-174 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_proquest_journals_2008894027 |
source | JSTOR Journals and Primary Sources |
subjects | Calculus Hilbert space Markov chains Nonlinear equations Partial differential equations Stochastic models Studies Viscosity Well posed problems |
title | PATH-DEPENDENT EQUATIONS AND VISCOSITY SOLUTIONS IN INFINITE DIMENSION |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PATH-DEPENDENT%20EQUATIONS%20AND%20VISCOSITY%20SOLUTIONS%20IN%20INFINITE%20DIMENSION&rft.jtitle=The%20Annals%20of%20probability&rft.au=Cosso,%20Andrea&rft.date=2018-01-01&rft.volume=46&rft.issue=1&rft.spage=126&rft.epage=174&rft.pages=126-174&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/17-AOP1181&rft_dat=%3Cjstor_proqu%3E26358670%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-a11651c70692a4aa133f5671754bd0f0bbdd2478eac58dea4efa419bcdf3b9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2008894027&rft_id=info:pmid/&rft_jstor_id=26358670&rfr_iscdi=true |