Loading…

Characterization and modeling of microstructural stresses in alumina

Brittle failure is often influenced by difficult to measure and variable microstructure‐scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2018-05, Vol.101 (5), p.2155-2161
Main Authors: Teague, Melissa C., Rodgers, Theron, Grutzik, Scott, Meserole, Stephen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brittle failure is often influenced by difficult to measure and variable microstructure‐scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (< 2 μm). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced qualitative agreement in comparison with the experimentally measured results. Microstructure scale modeling is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.15369