Loading…

Hyperbolic geometry and moduli of real curves of genus three

The moduli space of smooth real plane quartic curves consists of six connected components. We prove that each of these components admits a real hyperbolic structure. These connected components correspond to the six real forms of a certain hyperbolic lattice over the Gaussian integers. We will study...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische annalen 2018-04, Vol.370 (3-4), p.1321-1360
Main Authors: Heckman, Gert, Rieken, Sander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-332df4904e38654b7f533a0d0bba782e53adc65c8b531a1d44f0951dc056bd333
cites cdi_FETCH-LOGICAL-c316t-332df4904e38654b7f533a0d0bba782e53adc65c8b531a1d44f0951dc056bd333
container_end_page 1360
container_issue 3-4
container_start_page 1321
container_title Mathematische annalen
container_volume 370
creator Heckman, Gert
Rieken, Sander
description The moduli space of smooth real plane quartic curves consists of six connected components. We prove that each of these components admits a real hyperbolic structure. These connected components correspond to the six real forms of a certain hyperbolic lattice over the Gaussian integers. We will study this Gaussian lattice in detail. For the connected component that corresponds to maximal real quartic curves, we obtain a more explicit description. We construct a Coxeter diagram that encodes the geometry of this component.
doi_str_mv 10.1007/s00208-017-1587-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2009641684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009641684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-332df4904e38654b7f533a0d0bba782e53adc65c8b531a1d44f0951dc056bd333</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSSXZT8CLFLyh40XPIbmZry3ZTk12h_94tK3jyNAzzvO_Aw9i1hFsJUN5lAAVWgCyFNLYU6oTNpEYlpIXylM3GsxHGojxnFzlvAQABzIzdvxz2lKrYbmq-prijPh247wLfxTC0Gx4bnsi3vB7SN-XjuqZuyLz_TESX7Kzxbaar3zlnH0-P78sXsXp7fl0-rESNsugFogqNXoAmtIXRVdkYRA8BqsqXVpFBH-rC1LYyKL0MWjewMDLUYIoqIOKc3Uy9-xS_Bsq928YhdeNLpwAWhZaF1SMlJ6pOMedEjdunzc6ng5PgjpLcJMmNktxRklNjRk2ZPLLdmtJf8_-hHzaVaFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009641684</pqid></control><display><type>article</type><title>Hyperbolic geometry and moduli of real curves of genus three</title><source>Springer Nature</source><creator>Heckman, Gert ; Rieken, Sander</creator><creatorcontrib>Heckman, Gert ; Rieken, Sander</creatorcontrib><description>The moduli space of smooth real plane quartic curves consists of six connected components. We prove that each of these components admits a real hyperbolic structure. These connected components correspond to the six real forms of a certain hyperbolic lattice over the Gaussian integers. We will study this Gaussian lattice in detail. For the connected component that corresponds to maximal real quartic curves, we obtain a more explicit description. We construct a Coxeter diagram that encodes the geometry of this component.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-017-1587-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Curves ; Geometry ; Integers ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische annalen, 2018-04, Vol.370 (3-4), p.1321-1360</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-332df4904e38654b7f533a0d0bba782e53adc65c8b531a1d44f0951dc056bd333</citedby><cites>FETCH-LOGICAL-c316t-332df4904e38654b7f533a0d0bba782e53adc65c8b531a1d44f0951dc056bd333</cites><orcidid>0000-0002-5563-2422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Heckman, Gert</creatorcontrib><creatorcontrib>Rieken, Sander</creatorcontrib><title>Hyperbolic geometry and moduli of real curves of genus three</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>The moduli space of smooth real plane quartic curves consists of six connected components. We prove that each of these components admits a real hyperbolic structure. These connected components correspond to the six real forms of a certain hyperbolic lattice over the Gaussian integers. We will study this Gaussian lattice in detail. For the connected component that corresponds to maximal real quartic curves, we obtain a more explicit description. We construct a Coxeter diagram that encodes the geometry of this component.</description><subject>Curves</subject><subject>Geometry</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSSXZT8CLFLyh40XPIbmZry3ZTk12h_94tK3jyNAzzvO_Aw9i1hFsJUN5lAAVWgCyFNLYU6oTNpEYlpIXylM3GsxHGojxnFzlvAQABzIzdvxz2lKrYbmq-prijPh247wLfxTC0Gx4bnsi3vB7SN-XjuqZuyLz_TESX7Kzxbaar3zlnH0-P78sXsXp7fl0-rESNsugFogqNXoAmtIXRVdkYRA8BqsqXVpFBH-rC1LYyKL0MWjewMDLUYIoqIOKc3Uy9-xS_Bsq928YhdeNLpwAWhZaF1SMlJ6pOMedEjdunzc6ng5PgjpLcJMmNktxRklNjRk2ZPLLdmtJf8_-hHzaVaFI</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Heckman, Gert</creator><creator>Rieken, Sander</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5563-2422</orcidid></search><sort><creationdate>20180401</creationdate><title>Hyperbolic geometry and moduli of real curves of genus three</title><author>Heckman, Gert ; Rieken, Sander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-332df4904e38654b7f533a0d0bba782e53adc65c8b531a1d44f0951dc056bd333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Curves</topic><topic>Geometry</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heckman, Gert</creatorcontrib><creatorcontrib>Rieken, Sander</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heckman, Gert</au><au>Rieken, Sander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic geometry and moduli of real curves of genus three</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>370</volume><issue>3-4</issue><spage>1321</spage><epage>1360</epage><pages>1321-1360</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>The moduli space of smooth real plane quartic curves consists of six connected components. We prove that each of these components admits a real hyperbolic structure. These connected components correspond to the six real forms of a certain hyperbolic lattice over the Gaussian integers. We will study this Gaussian lattice in detail. For the connected component that corresponds to maximal real quartic curves, we obtain a more explicit description. We construct a Coxeter diagram that encodes the geometry of this component.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-017-1587-2</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0002-5563-2422</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2018-04, Vol.370 (3-4), p.1321-1360
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_2009641684
source Springer Nature
subjects Curves
Geometry
Integers
Mathematics
Mathematics and Statistics
title Hyperbolic geometry and moduli of real curves of genus three
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20geometry%20and%20moduli%20of%20real%20curves%20of%20genus%20three&rft.jtitle=Mathematische%20annalen&rft.au=Heckman,%20Gert&rft.date=2018-04-01&rft.volume=370&rft.issue=3-4&rft.spage=1321&rft.epage=1360&rft.pages=1321-1360&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-017-1587-2&rft_dat=%3Cproquest_cross%3E2009641684%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-332df4904e38654b7f533a0d0bba782e53adc65c8b531a1d44f0951dc056bd333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2009641684&rft_id=info:pmid/&rfr_iscdi=true