Loading…
Hyperbolic geometry and moduli of real curves of genus three
The moduli space of smooth real plane quartic curves consists of six connected components. We prove that each of these components admits a real hyperbolic structure. These connected components correspond to the six real forms of a certain hyperbolic lattice over the Gaussian integers. We will study...
Saved in:
Published in: | Mathematische annalen 2018-04, Vol.370 (3-4), p.1321-1360 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-332df4904e38654b7f533a0d0bba782e53adc65c8b531a1d44f0951dc056bd333 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-332df4904e38654b7f533a0d0bba782e53adc65c8b531a1d44f0951dc056bd333 |
container_end_page | 1360 |
container_issue | 3-4 |
container_start_page | 1321 |
container_title | Mathematische annalen |
container_volume | 370 |
creator | Heckman, Gert Rieken, Sander |
description | The moduli space of smooth real plane quartic curves consists of six connected components. We prove that each of these components admits a real hyperbolic structure. These connected components correspond to the six real forms of a certain hyperbolic lattice over the Gaussian integers. We will study this Gaussian lattice in detail. For the connected component that corresponds to maximal real quartic curves, we obtain a more explicit description. We construct a Coxeter diagram that encodes the geometry of this component. |
doi_str_mv | 10.1007/s00208-017-1587-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2009641684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009641684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-332df4904e38654b7f533a0d0bba782e53adc65c8b531a1d44f0951dc056bd333</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSSXZT8CLFLyh40XPIbmZry3ZTk12h_94tK3jyNAzzvO_Aw9i1hFsJUN5lAAVWgCyFNLYU6oTNpEYlpIXylM3GsxHGojxnFzlvAQABzIzdvxz2lKrYbmq-prijPh247wLfxTC0Gx4bnsi3vB7SN-XjuqZuyLz_TESX7Kzxbaar3zlnH0-P78sXsXp7fl0-rESNsugFogqNXoAmtIXRVdkYRA8BqsqXVpFBH-rC1LYyKL0MWjewMDLUYIoqIOKc3Uy9-xS_Bsq928YhdeNLpwAWhZaF1SMlJ6pOMedEjdunzc6ng5PgjpLcJMmNktxRklNjRk2ZPLLdmtJf8_-hHzaVaFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009641684</pqid></control><display><type>article</type><title>Hyperbolic geometry and moduli of real curves of genus three</title><source>Springer Nature</source><creator>Heckman, Gert ; Rieken, Sander</creator><creatorcontrib>Heckman, Gert ; Rieken, Sander</creatorcontrib><description>The moduli space of smooth real plane quartic curves consists of six connected components. We prove that each of these components admits a real hyperbolic structure. These connected components correspond to the six real forms of a certain hyperbolic lattice over the Gaussian integers. We will study this Gaussian lattice in detail. For the connected component that corresponds to maximal real quartic curves, we obtain a more explicit description. We construct a Coxeter diagram that encodes the geometry of this component.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-017-1587-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Curves ; Geometry ; Integers ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische annalen, 2018-04, Vol.370 (3-4), p.1321-1360</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-332df4904e38654b7f533a0d0bba782e53adc65c8b531a1d44f0951dc056bd333</citedby><cites>FETCH-LOGICAL-c316t-332df4904e38654b7f533a0d0bba782e53adc65c8b531a1d44f0951dc056bd333</cites><orcidid>0000-0002-5563-2422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Heckman, Gert</creatorcontrib><creatorcontrib>Rieken, Sander</creatorcontrib><title>Hyperbolic geometry and moduli of real curves of genus three</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>The moduli space of smooth real plane quartic curves consists of six connected components. We prove that each of these components admits a real hyperbolic structure. These connected components correspond to the six real forms of a certain hyperbolic lattice over the Gaussian integers. We will study this Gaussian lattice in detail. For the connected component that corresponds to maximal real quartic curves, we obtain a more explicit description. We construct a Coxeter diagram that encodes the geometry of this component.</description><subject>Curves</subject><subject>Geometry</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSSXZT8CLFLyh40XPIbmZry3ZTk12h_94tK3jyNAzzvO_Aw9i1hFsJUN5lAAVWgCyFNLYU6oTNpEYlpIXylM3GsxHGojxnFzlvAQABzIzdvxz2lKrYbmq-prijPh247wLfxTC0Gx4bnsi3vB7SN-XjuqZuyLz_TESX7Kzxbaar3zlnH0-P78sXsXp7fl0-rESNsugFogqNXoAmtIXRVdkYRA8BqsqXVpFBH-rC1LYyKL0MWjewMDLUYIoqIOKc3Uy9-xS_Bsq928YhdeNLpwAWhZaF1SMlJ6pOMedEjdunzc6ng5PgjpLcJMmNktxRklNjRk2ZPLLdmtJf8_-hHzaVaFI</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Heckman, Gert</creator><creator>Rieken, Sander</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5563-2422</orcidid></search><sort><creationdate>20180401</creationdate><title>Hyperbolic geometry and moduli of real curves of genus three</title><author>Heckman, Gert ; Rieken, Sander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-332df4904e38654b7f533a0d0bba782e53adc65c8b531a1d44f0951dc056bd333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Curves</topic><topic>Geometry</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heckman, Gert</creatorcontrib><creatorcontrib>Rieken, Sander</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heckman, Gert</au><au>Rieken, Sander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic geometry and moduli of real curves of genus three</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>370</volume><issue>3-4</issue><spage>1321</spage><epage>1360</epage><pages>1321-1360</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>The moduli space of smooth real plane quartic curves consists of six connected components. We prove that each of these components admits a real hyperbolic structure. These connected components correspond to the six real forms of a certain hyperbolic lattice over the Gaussian integers. We will study this Gaussian lattice in detail. For the connected component that corresponds to maximal real quartic curves, we obtain a more explicit description. We construct a Coxeter diagram that encodes the geometry of this component.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-017-1587-2</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0002-5563-2422</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2018-04, Vol.370 (3-4), p.1321-1360 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_2009641684 |
source | Springer Nature |
subjects | Curves Geometry Integers Mathematics Mathematics and Statistics |
title | Hyperbolic geometry and moduli of real curves of genus three |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20geometry%20and%20moduli%20of%20real%20curves%20of%20genus%20three&rft.jtitle=Mathematische%20annalen&rft.au=Heckman,%20Gert&rft.date=2018-04-01&rft.volume=370&rft.issue=3-4&rft.spage=1321&rft.epage=1360&rft.pages=1321-1360&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-017-1587-2&rft_dat=%3Cproquest_cross%3E2009641684%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-332df4904e38654b7f533a0d0bba782e53adc65c8b531a1d44f0951dc056bd333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2009641684&rft_id=info:pmid/&rfr_iscdi=true |