Loading…
Crowd Segmentation Using both Appearance and Stereo Information
Crowd segmentation is an important issue in video surveillance. With the decrease in their cost, stereo cameras can be used to help develop new algorithms to achieve better accuracy in crowd segmentation. This paper aims to develop a method to explore the depth cues for crowd segmentation in video s...
Saved in:
Published in: | Journal of signal processing systems 2018-03, Vol.90 (3), p.421-432 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-ef186acde866a9e5ae477aea535a12fd79635d9e4d926f2e3283c6c591831f113 |
container_end_page | 432 |
container_issue | 3 |
container_start_page | 421 |
container_title | Journal of signal processing systems |
container_volume | 90 |
creator | Hou, Ya-Li Pang, Grantham K. H. Hao, Xiaoli |
description | Crowd segmentation is an important issue in video surveillance. With the decrease in their cost, stereo cameras can be used to help develop new algorithms to achieve better accuracy in crowd segmentation. This paper aims to develop a method to explore the depth cues for crowd segmentation in video surveillance. The contributions of this paper are twofold. First, a novel crowd segmentation method closely coupling appearance and stereo information has been developed. Instead of performing disparity calculation as a preprocessing step, stereo information is obtained concurrently with appearance-based crowd segmentation. Second, an object-level disparity algorithm is proposed for object segmentation in surveillance scenarios. Only one disparity value for each hypothetical object greatly reduces the computational complexity and simplifies the segmentation method. Experimental results and quantitative evaluations based on two surveillance scenarios are presented in this paper. The results consistently show the effectiveness of the algorithm in exploring depth cues for crowd segmentation. |
doi_str_mv | 10.1007/s11265-017-1258-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2009644683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009644683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-ef186acde866a9e5ae477aea535a12fd79635d9e4d926f2e3283c6c591831f113</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsf4G7AdTQvmWSSlZSitVBwoV2HOPMytthkTKaIf-_UUVy5endx7n1wCLkEdg2MVTcZgCtJGVQUuNSUH5EJGGGoBpDHv5mBPiVnOW8ZU6ySMCG38xQ_muIJ2x2G3vWbGIp13oS2eIn9azHrOnTJhRoLFwasx4SxWAYf0-4bPicn3r1lvPi5U7K-v3ueP9DV42I5n61ozZXuKXrQytUNaqWcQemwrCqHTgrpgPumMkrIxmDZGK48R8G1qFUtDWgBHkBMydW426X4vsfc223cpzC8tJwxo8pSaTFQMFJ1ijkn9LZLm51LnxaYPXiyoyc7eLIHT5YPHT528sCGFtPf8v-lL0kvagM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009644683</pqid></control><display><type>article</type><title>Crowd Segmentation Using both Appearance and Stereo Information</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Hou, Ya-Li ; Pang, Grantham K. H. ; Hao, Xiaoli</creator><creatorcontrib>Hou, Ya-Li ; Pang, Grantham K. H. ; Hao, Xiaoli</creatorcontrib><description>Crowd segmentation is an important issue in video surveillance. With the decrease in their cost, stereo cameras can be used to help develop new algorithms to achieve better accuracy in crowd segmentation. This paper aims to develop a method to explore the depth cues for crowd segmentation in video surveillance. The contributions of this paper are twofold. First, a novel crowd segmentation method closely coupling appearance and stereo information has been developed. Instead of performing disparity calculation as a preprocessing step, stereo information is obtained concurrently with appearance-based crowd segmentation. Second, an object-level disparity algorithm is proposed for object segmentation in surveillance scenarios. Only one disparity value for each hypothetical object greatly reduces the computational complexity and simplifies the segmentation method. Experimental results and quantitative evaluations based on two surveillance scenarios are presented in this paper. The results consistently show the effectiveness of the algorithm in exploring depth cues for crowd segmentation.</description><identifier>ISSN: 1939-8018</identifier><identifier>EISSN: 1939-8115</identifier><identifier>DOI: 10.1007/s11265-017-1258-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Circuits and Systems ; Computer Imaging ; Crowd monitoring ; Electrical Engineering ; Engineering ; Image Processing and Computer Vision ; Pattern Recognition ; Pattern Recognition and Graphics ; Preprocessing ; Segmentation ; Signal,Image and Speech Processing ; Surveillance ; Vision</subject><ispartof>Journal of signal processing systems, 2018-03, Vol.90 (3), p.421-432</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-ef186acde866a9e5ae477aea535a12fd79635d9e4d926f2e3283c6c591831f113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hou, Ya-Li</creatorcontrib><creatorcontrib>Pang, Grantham K. H.</creatorcontrib><creatorcontrib>Hao, Xiaoli</creatorcontrib><title>Crowd Segmentation Using both Appearance and Stereo Information</title><title>Journal of signal processing systems</title><addtitle>J Sign Process Syst</addtitle><description>Crowd segmentation is an important issue in video surveillance. With the decrease in their cost, stereo cameras can be used to help develop new algorithms to achieve better accuracy in crowd segmentation. This paper aims to develop a method to explore the depth cues for crowd segmentation in video surveillance. The contributions of this paper are twofold. First, a novel crowd segmentation method closely coupling appearance and stereo information has been developed. Instead of performing disparity calculation as a preprocessing step, stereo information is obtained concurrently with appearance-based crowd segmentation. Second, an object-level disparity algorithm is proposed for object segmentation in surveillance scenarios. Only one disparity value for each hypothetical object greatly reduces the computational complexity and simplifies the segmentation method. Experimental results and quantitative evaluations based on two surveillance scenarios are presented in this paper. The results consistently show the effectiveness of the algorithm in exploring depth cues for crowd segmentation.</description><subject>Algorithms</subject><subject>Circuits and Systems</subject><subject>Computer Imaging</subject><subject>Crowd monitoring</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Image Processing and Computer Vision</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Preprocessing</subject><subject>Segmentation</subject><subject>Signal,Image and Speech Processing</subject><subject>Surveillance</subject><subject>Vision</subject><issn>1939-8018</issn><issn>1939-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEURYMoWKsf4G7AdTQvmWSSlZSitVBwoV2HOPMytthkTKaIf-_UUVy5endx7n1wCLkEdg2MVTcZgCtJGVQUuNSUH5EJGGGoBpDHv5mBPiVnOW8ZU6ySMCG38xQ_muIJ2x2G3vWbGIp13oS2eIn9azHrOnTJhRoLFwasx4SxWAYf0-4bPicn3r1lvPi5U7K-v3ueP9DV42I5n61ozZXuKXrQytUNaqWcQemwrCqHTgrpgPumMkrIxmDZGK48R8G1qFUtDWgBHkBMydW426X4vsfc223cpzC8tJwxo8pSaTFQMFJ1ijkn9LZLm51LnxaYPXiyoyc7eLIHT5YPHT528sCGFtPf8v-lL0kvagM</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Hou, Ya-Li</creator><creator>Pang, Grantham K. H.</creator><creator>Hao, Xiaoli</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>Crowd Segmentation Using both Appearance and Stereo Information</title><author>Hou, Ya-Li ; Pang, Grantham K. H. ; Hao, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-ef186acde866a9e5ae477aea535a12fd79635d9e4d926f2e3283c6c591831f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Circuits and Systems</topic><topic>Computer Imaging</topic><topic>Crowd monitoring</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Image Processing and Computer Vision</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Preprocessing</topic><topic>Segmentation</topic><topic>Signal,Image and Speech Processing</topic><topic>Surveillance</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Ya-Li</creatorcontrib><creatorcontrib>Pang, Grantham K. H.</creatorcontrib><creatorcontrib>Hao, Xiaoli</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of signal processing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Ya-Li</au><au>Pang, Grantham K. H.</au><au>Hao, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crowd Segmentation Using both Appearance and Stereo Information</atitle><jtitle>Journal of signal processing systems</jtitle><stitle>J Sign Process Syst</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>90</volume><issue>3</issue><spage>421</spage><epage>432</epage><pages>421-432</pages><issn>1939-8018</issn><eissn>1939-8115</eissn><abstract>Crowd segmentation is an important issue in video surveillance. With the decrease in their cost, stereo cameras can be used to help develop new algorithms to achieve better accuracy in crowd segmentation. This paper aims to develop a method to explore the depth cues for crowd segmentation in video surveillance. The contributions of this paper are twofold. First, a novel crowd segmentation method closely coupling appearance and stereo information has been developed. Instead of performing disparity calculation as a preprocessing step, stereo information is obtained concurrently with appearance-based crowd segmentation. Second, an object-level disparity algorithm is proposed for object segmentation in surveillance scenarios. Only one disparity value for each hypothetical object greatly reduces the computational complexity and simplifies the segmentation method. Experimental results and quantitative evaluations based on two surveillance scenarios are presented in this paper. The results consistently show the effectiveness of the algorithm in exploring depth cues for crowd segmentation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11265-017-1258-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-8018 |
ispartof | Journal of signal processing systems, 2018-03, Vol.90 (3), p.421-432 |
issn | 1939-8018 1939-8115 |
language | eng |
recordid | cdi_proquest_journals_2009644683 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Algorithms Circuits and Systems Computer Imaging Crowd monitoring Electrical Engineering Engineering Image Processing and Computer Vision Pattern Recognition Pattern Recognition and Graphics Preprocessing Segmentation Signal,Image and Speech Processing Surveillance Vision |
title | Crowd Segmentation Using both Appearance and Stereo Information |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crowd%20Segmentation%20Using%20both%20Appearance%20and%20Stereo%20Information&rft.jtitle=Journal%20of%20signal%20processing%20systems&rft.au=Hou,%20Ya-Li&rft.date=2018-03-01&rft.volume=90&rft.issue=3&rft.spage=421&rft.epage=432&rft.pages=421-432&rft.issn=1939-8018&rft.eissn=1939-8115&rft_id=info:doi/10.1007/s11265-017-1258-2&rft_dat=%3Cproquest_cross%3E2009644683%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-ef186acde866a9e5ae477aea535a12fd79635d9e4d926f2e3283c6c591831f113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2009644683&rft_id=info:pmid/&rfr_iscdi=true |