Loading…

Crowd Segmentation Using both Appearance and Stereo Information

Crowd segmentation is an important issue in video surveillance. With the decrease in their cost, stereo cameras can be used to help develop new algorithms to achieve better accuracy in crowd segmentation. This paper aims to develop a method to explore the depth cues for crowd segmentation in video s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of signal processing systems 2018-03, Vol.90 (3), p.421-432
Main Authors: Hou, Ya-Li, Pang, Grantham K. H., Hao, Xiaoli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-ef186acde866a9e5ae477aea535a12fd79635d9e4d926f2e3283c6c591831f113
container_end_page 432
container_issue 3
container_start_page 421
container_title Journal of signal processing systems
container_volume 90
creator Hou, Ya-Li
Pang, Grantham K. H.
Hao, Xiaoli
description Crowd segmentation is an important issue in video surveillance. With the decrease in their cost, stereo cameras can be used to help develop new algorithms to achieve better accuracy in crowd segmentation. This paper aims to develop a method to explore the depth cues for crowd segmentation in video surveillance. The contributions of this paper are twofold. First, a novel crowd segmentation method closely coupling appearance and stereo information has been developed. Instead of performing disparity calculation as a preprocessing step, stereo information is obtained concurrently with appearance-based crowd segmentation. Second, an object-level disparity algorithm is proposed for object segmentation in surveillance scenarios. Only one disparity value for each hypothetical object greatly reduces the computational complexity and simplifies the segmentation method. Experimental results and quantitative evaluations based on two surveillance scenarios are presented in this paper. The results consistently show the effectiveness of the algorithm in exploring depth cues for crowd segmentation.
doi_str_mv 10.1007/s11265-017-1258-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2009644683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009644683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-ef186acde866a9e5ae477aea535a12fd79635d9e4d926f2e3283c6c591831f113</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsf4G7AdTQvmWSSlZSitVBwoV2HOPMytthkTKaIf-_UUVy5endx7n1wCLkEdg2MVTcZgCtJGVQUuNSUH5EJGGGoBpDHv5mBPiVnOW8ZU6ySMCG38xQ_muIJ2x2G3vWbGIp13oS2eIn9azHrOnTJhRoLFwasx4SxWAYf0-4bPicn3r1lvPi5U7K-v3ueP9DV42I5n61ozZXuKXrQytUNaqWcQemwrCqHTgrpgPumMkrIxmDZGK48R8G1qFUtDWgBHkBMydW426X4vsfc223cpzC8tJwxo8pSaTFQMFJ1ijkn9LZLm51LnxaYPXiyoyc7eLIHT5YPHT528sCGFtPf8v-lL0kvagM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009644683</pqid></control><display><type>article</type><title>Crowd Segmentation Using both Appearance and Stereo Information</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Hou, Ya-Li ; Pang, Grantham K. H. ; Hao, Xiaoli</creator><creatorcontrib>Hou, Ya-Li ; Pang, Grantham K. H. ; Hao, Xiaoli</creatorcontrib><description>Crowd segmentation is an important issue in video surveillance. With the decrease in their cost, stereo cameras can be used to help develop new algorithms to achieve better accuracy in crowd segmentation. This paper aims to develop a method to explore the depth cues for crowd segmentation in video surveillance. The contributions of this paper are twofold. First, a novel crowd segmentation method closely coupling appearance and stereo information has been developed. Instead of performing disparity calculation as a preprocessing step, stereo information is obtained concurrently with appearance-based crowd segmentation. Second, an object-level disparity algorithm is proposed for object segmentation in surveillance scenarios. Only one disparity value for each hypothetical object greatly reduces the computational complexity and simplifies the segmentation method. Experimental results and quantitative evaluations based on two surveillance scenarios are presented in this paper. The results consistently show the effectiveness of the algorithm in exploring depth cues for crowd segmentation.</description><identifier>ISSN: 1939-8018</identifier><identifier>EISSN: 1939-8115</identifier><identifier>DOI: 10.1007/s11265-017-1258-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Circuits and Systems ; Computer Imaging ; Crowd monitoring ; Electrical Engineering ; Engineering ; Image Processing and Computer Vision ; Pattern Recognition ; Pattern Recognition and Graphics ; Preprocessing ; Segmentation ; Signal,Image and Speech Processing ; Surveillance ; Vision</subject><ispartof>Journal of signal processing systems, 2018-03, Vol.90 (3), p.421-432</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-ef186acde866a9e5ae477aea535a12fd79635d9e4d926f2e3283c6c591831f113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hou, Ya-Li</creatorcontrib><creatorcontrib>Pang, Grantham K. H.</creatorcontrib><creatorcontrib>Hao, Xiaoli</creatorcontrib><title>Crowd Segmentation Using both Appearance and Stereo Information</title><title>Journal of signal processing systems</title><addtitle>J Sign Process Syst</addtitle><description>Crowd segmentation is an important issue in video surveillance. With the decrease in their cost, stereo cameras can be used to help develop new algorithms to achieve better accuracy in crowd segmentation. This paper aims to develop a method to explore the depth cues for crowd segmentation in video surveillance. The contributions of this paper are twofold. First, a novel crowd segmentation method closely coupling appearance and stereo information has been developed. Instead of performing disparity calculation as a preprocessing step, stereo information is obtained concurrently with appearance-based crowd segmentation. Second, an object-level disparity algorithm is proposed for object segmentation in surveillance scenarios. Only one disparity value for each hypothetical object greatly reduces the computational complexity and simplifies the segmentation method. Experimental results and quantitative evaluations based on two surveillance scenarios are presented in this paper. The results consistently show the effectiveness of the algorithm in exploring depth cues for crowd segmentation.</description><subject>Algorithms</subject><subject>Circuits and Systems</subject><subject>Computer Imaging</subject><subject>Crowd monitoring</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Image Processing and Computer Vision</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Preprocessing</subject><subject>Segmentation</subject><subject>Signal,Image and Speech Processing</subject><subject>Surveillance</subject><subject>Vision</subject><issn>1939-8018</issn><issn>1939-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEURYMoWKsf4G7AdTQvmWSSlZSitVBwoV2HOPMytthkTKaIf-_UUVy5endx7n1wCLkEdg2MVTcZgCtJGVQUuNSUH5EJGGGoBpDHv5mBPiVnOW8ZU6ySMCG38xQ_muIJ2x2G3vWbGIp13oS2eIn9azHrOnTJhRoLFwasx4SxWAYf0-4bPicn3r1lvPi5U7K-v3ueP9DV42I5n61ozZXuKXrQytUNaqWcQemwrCqHTgrpgPumMkrIxmDZGK48R8G1qFUtDWgBHkBMydW426X4vsfc223cpzC8tJwxo8pSaTFQMFJ1ijkn9LZLm51LnxaYPXiyoyc7eLIHT5YPHT528sCGFtPf8v-lL0kvagM</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Hou, Ya-Li</creator><creator>Pang, Grantham K. H.</creator><creator>Hao, Xiaoli</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>Crowd Segmentation Using both Appearance and Stereo Information</title><author>Hou, Ya-Li ; Pang, Grantham K. H. ; Hao, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-ef186acde866a9e5ae477aea535a12fd79635d9e4d926f2e3283c6c591831f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Circuits and Systems</topic><topic>Computer Imaging</topic><topic>Crowd monitoring</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Image Processing and Computer Vision</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Preprocessing</topic><topic>Segmentation</topic><topic>Signal,Image and Speech Processing</topic><topic>Surveillance</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Ya-Li</creatorcontrib><creatorcontrib>Pang, Grantham K. H.</creatorcontrib><creatorcontrib>Hao, Xiaoli</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of signal processing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Ya-Li</au><au>Pang, Grantham K. H.</au><au>Hao, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crowd Segmentation Using both Appearance and Stereo Information</atitle><jtitle>Journal of signal processing systems</jtitle><stitle>J Sign Process Syst</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>90</volume><issue>3</issue><spage>421</spage><epage>432</epage><pages>421-432</pages><issn>1939-8018</issn><eissn>1939-8115</eissn><abstract>Crowd segmentation is an important issue in video surveillance. With the decrease in their cost, stereo cameras can be used to help develop new algorithms to achieve better accuracy in crowd segmentation. This paper aims to develop a method to explore the depth cues for crowd segmentation in video surveillance. The contributions of this paper are twofold. First, a novel crowd segmentation method closely coupling appearance and stereo information has been developed. Instead of performing disparity calculation as a preprocessing step, stereo information is obtained concurrently with appearance-based crowd segmentation. Second, an object-level disparity algorithm is proposed for object segmentation in surveillance scenarios. Only one disparity value for each hypothetical object greatly reduces the computational complexity and simplifies the segmentation method. Experimental results and quantitative evaluations based on two surveillance scenarios are presented in this paper. The results consistently show the effectiveness of the algorithm in exploring depth cues for crowd segmentation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11265-017-1258-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1939-8018
ispartof Journal of signal processing systems, 2018-03, Vol.90 (3), p.421-432
issn 1939-8018
1939-8115
language eng
recordid cdi_proquest_journals_2009644683
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Algorithms
Circuits and Systems
Computer Imaging
Crowd monitoring
Electrical Engineering
Engineering
Image Processing and Computer Vision
Pattern Recognition
Pattern Recognition and Graphics
Preprocessing
Segmentation
Signal,Image and Speech Processing
Surveillance
Vision
title Crowd Segmentation Using both Appearance and Stereo Information
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crowd%20Segmentation%20Using%20both%20Appearance%20and%20Stereo%20Information&rft.jtitle=Journal%20of%20signal%20processing%20systems&rft.au=Hou,%20Ya-Li&rft.date=2018-03-01&rft.volume=90&rft.issue=3&rft.spage=421&rft.epage=432&rft.pages=421-432&rft.issn=1939-8018&rft.eissn=1939-8115&rft_id=info:doi/10.1007/s11265-017-1258-2&rft_dat=%3Cproquest_cross%3E2009644683%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-ef186acde866a9e5ae477aea535a12fd79635d9e4d926f2e3283c6c591831f113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2009644683&rft_id=info:pmid/&rfr_iscdi=true