Loading…
Geo-material surface modification of microchips using layer-by-layer (LbL) assembly for subsurface energy and environmental applications
A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils. This research employs a novel layer-by-layer (LbL) assembly technology to produce rock-forming mineral coatings on micro...
Saved in:
Published in: | Lab on a chip 2018-01, Vol.18 (2), p.285-295 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-40032ff3d419ed9cc80add5d0c633ba4bf46c5c85b2cff4717f5a9fa46dbbd963 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-40032ff3d419ed9cc80add5d0c633ba4bf46c5c85b2cff4717f5a9fa46dbbd963 |
container_end_page | 295 |
container_issue | 2 |
container_start_page | 285 |
container_title | Lab on a chip |
container_volume | 18 |
creator | Zhang, Y. Q Sanati-Nezhad, A Hejazi, S. H |
description | A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils. This research employs a novel layer-by-layer (LbL) assembly technology to produce rock-forming mineral coatings on microchip surfaces. The outcome of the work is a series of 'surface-mimetic micro-reservoirs (SMMR)' that represent multi-scales and multi-types of natural rocks/soils. For demonstration, the clay pores of sandstones and mudrocks are reconstructed by representatively coating montmorillonite and kaolinite in polydimethylsiloxane (PDMS) microchips in a wide range of channel sizes (width of 10-250 μm, depth of 40-100 μm) and on glass substrates. The morphological and structural properties of mineral coatings are characterized using a scanning electron microscope (SEM), optical microscope and profilometer. The coating stability is tested by dynamic flooding experiments. The surface wettability is characterized by measuring mineral oil-water contact angles. The results demonstrate the formation of nano- to micro-scale, fully-covered and stable mineral surfaces with varying wetting properties. There is an opportunity to use this work in the development of microfluidic technology-based applications for subsurface energy and environmental research.
A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils. |
doi_str_mv | 10.1039/c7lc00675f |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010862248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010862248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-40032ff3d419ed9cc80add5d0c633ba4bf46c5c85b2cff4717f5a9fa46dbbd963</originalsourceid><addsrcrecordid>eNp9kctq3jAQhUVoaNK0m-xTFLpJCk5GlnzRMvzkUjB0066NromCbbmSHfAb9LGj_LdAF93MHJiPM8MchE4JXBGg_FpVnQIoq8IeoGPCKpoBqfmHvebVEfoU4zMAKVhZf0RHOSecp3KM_t4bn_ViMsGJDsc5WKEM7r121ikxOT9gb3HvVPDqyY0Rz9ENj7gTiwmZXLK1wBeNbC6xiNH0sluw9SFZyZ2bGUx4XLAYdJIvLvihN8OU1olx7LZb4md0aEUXzZdtP0G_725_rR6y5uf9j9VNkykG-ZQxAJpbSzUj3GiuVA1C60KDKimVgknLSlWoupC5spZVpLKF4FawUkupeUlP0MXGdwz-z2zi1PYuKtN1YjB-jm36Vk6B1hwS-u0f9NnPYUjXtTkQqMs8Z3Wivm-o9KIYg7HtGFwvwtISaN_yaVdVs1rnc5fgr1vLWfZG79FdIAk43wAhqv30PeB21DYxZ_9j6Cs5VqMW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010862248</pqid></control><display><type>article</type><title>Geo-material surface modification of microchips using layer-by-layer (LbL) assembly for subsurface energy and environmental applications</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Zhang, Y. Q ; Sanati-Nezhad, A ; Hejazi, S. H</creator><creatorcontrib>Zhang, Y. Q ; Sanati-Nezhad, A ; Hejazi, S. H</creatorcontrib><description>A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils. This research employs a novel layer-by-layer (LbL) assembly technology to produce rock-forming mineral coatings on microchip surfaces. The outcome of the work is a series of 'surface-mimetic micro-reservoirs (SMMR)' that represent multi-scales and multi-types of natural rocks/soils. For demonstration, the clay pores of sandstones and mudrocks are reconstructed by representatively coating montmorillonite and kaolinite in polydimethylsiloxane (PDMS) microchips in a wide range of channel sizes (width of 10-250 μm, depth of 40-100 μm) and on glass substrates. The morphological and structural properties of mineral coatings are characterized using a scanning electron microscope (SEM), optical microscope and profilometer. The coating stability is tested by dynamic flooding experiments. The surface wettability is characterized by measuring mineral oil-water contact angles. The results demonstrate the formation of nano- to micro-scale, fully-covered and stable mineral surfaces with varying wetting properties. There is an opportunity to use this work in the development of microfluidic technology-based applications for subsurface energy and environmental research.
A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c7lc00675f</identifier><identifier>PMID: 29199291</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Assembly ; Clay minerals ; Coatings ; Contact angle ; Dynamic stability ; Flooding ; Glass substrates ; Kaolinite ; Mineral oils ; Montmorillonite ; Polydimethylsiloxane ; Rocks ; Sandstone ; Semiconductors ; Silicone resins ; Wettability</subject><ispartof>Lab on a chip, 2018-01, Vol.18 (2), p.285-295</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-40032ff3d419ed9cc80add5d0c633ba4bf46c5c85b2cff4717f5a9fa46dbbd963</citedby><cites>FETCH-LOGICAL-c402t-40032ff3d419ed9cc80add5d0c633ba4bf46c5c85b2cff4717f5a9fa46dbbd963</cites><orcidid>0000-0002-2309-2388 ; 0000-0002-6266-8271 ; 0000-0003-1916-2678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29199291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Y. Q</creatorcontrib><creatorcontrib>Sanati-Nezhad, A</creatorcontrib><creatorcontrib>Hejazi, S. H</creatorcontrib><title>Geo-material surface modification of microchips using layer-by-layer (LbL) assembly for subsurface energy and environmental applications</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils. This research employs a novel layer-by-layer (LbL) assembly technology to produce rock-forming mineral coatings on microchip surfaces. The outcome of the work is a series of 'surface-mimetic micro-reservoirs (SMMR)' that represent multi-scales and multi-types of natural rocks/soils. For demonstration, the clay pores of sandstones and mudrocks are reconstructed by representatively coating montmorillonite and kaolinite in polydimethylsiloxane (PDMS) microchips in a wide range of channel sizes (width of 10-250 μm, depth of 40-100 μm) and on glass substrates. The morphological and structural properties of mineral coatings are characterized using a scanning electron microscope (SEM), optical microscope and profilometer. The coating stability is tested by dynamic flooding experiments. The surface wettability is characterized by measuring mineral oil-water contact angles. The results demonstrate the formation of nano- to micro-scale, fully-covered and stable mineral surfaces with varying wetting properties. There is an opportunity to use this work in the development of microfluidic technology-based applications for subsurface energy and environmental research.
A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils.</description><subject>Assembly</subject><subject>Clay minerals</subject><subject>Coatings</subject><subject>Contact angle</subject><subject>Dynamic stability</subject><subject>Flooding</subject><subject>Glass substrates</subject><subject>Kaolinite</subject><subject>Mineral oils</subject><subject>Montmorillonite</subject><subject>Polydimethylsiloxane</subject><subject>Rocks</subject><subject>Sandstone</subject><subject>Semiconductors</subject><subject>Silicone resins</subject><subject>Wettability</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kctq3jAQhUVoaNK0m-xTFLpJCk5GlnzRMvzkUjB0066NromCbbmSHfAb9LGj_LdAF93MHJiPM8MchE4JXBGg_FpVnQIoq8IeoGPCKpoBqfmHvebVEfoU4zMAKVhZf0RHOSecp3KM_t4bn_ViMsGJDsc5WKEM7r121ikxOT9gb3HvVPDqyY0Rz9ENj7gTiwmZXLK1wBeNbC6xiNH0sluw9SFZyZ2bGUx4XLAYdJIvLvihN8OU1olx7LZb4md0aEUXzZdtP0G_725_rR6y5uf9j9VNkykG-ZQxAJpbSzUj3GiuVA1C60KDKimVgknLSlWoupC5spZVpLKF4FawUkupeUlP0MXGdwz-z2zi1PYuKtN1YjB-jm36Vk6B1hwS-u0f9NnPYUjXtTkQqMs8Z3Wivm-o9KIYg7HtGFwvwtISaN_yaVdVs1rnc5fgr1vLWfZG79FdIAk43wAhqv30PeB21DYxZ_9j6Cs5VqMW</recordid><startdate>20180116</startdate><enddate>20180116</enddate><creator>Zhang, Y. Q</creator><creator>Sanati-Nezhad, A</creator><creator>Hejazi, S. H</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2309-2388</orcidid><orcidid>https://orcid.org/0000-0002-6266-8271</orcidid><orcidid>https://orcid.org/0000-0003-1916-2678</orcidid></search><sort><creationdate>20180116</creationdate><title>Geo-material surface modification of microchips using layer-by-layer (LbL) assembly for subsurface energy and environmental applications</title><author>Zhang, Y. Q ; Sanati-Nezhad, A ; Hejazi, S. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-40032ff3d419ed9cc80add5d0c633ba4bf46c5c85b2cff4717f5a9fa46dbbd963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Assembly</topic><topic>Clay minerals</topic><topic>Coatings</topic><topic>Contact angle</topic><topic>Dynamic stability</topic><topic>Flooding</topic><topic>Glass substrates</topic><topic>Kaolinite</topic><topic>Mineral oils</topic><topic>Montmorillonite</topic><topic>Polydimethylsiloxane</topic><topic>Rocks</topic><topic>Sandstone</topic><topic>Semiconductors</topic><topic>Silicone resins</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Y. Q</creatorcontrib><creatorcontrib>Sanati-Nezhad, A</creatorcontrib><creatorcontrib>Hejazi, S. H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Y. Q</au><au>Sanati-Nezhad, A</au><au>Hejazi, S. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geo-material surface modification of microchips using layer-by-layer (LbL) assembly for subsurface energy and environmental applications</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2018-01-16</date><risdate>2018</risdate><volume>18</volume><issue>2</issue><spage>285</spage><epage>295</epage><pages>285-295</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils. This research employs a novel layer-by-layer (LbL) assembly technology to produce rock-forming mineral coatings on microchip surfaces. The outcome of the work is a series of 'surface-mimetic micro-reservoirs (SMMR)' that represent multi-scales and multi-types of natural rocks/soils. For demonstration, the clay pores of sandstones and mudrocks are reconstructed by representatively coating montmorillonite and kaolinite in polydimethylsiloxane (PDMS) microchips in a wide range of channel sizes (width of 10-250 μm, depth of 40-100 μm) and on glass substrates. The morphological and structural properties of mineral coatings are characterized using a scanning electron microscope (SEM), optical microscope and profilometer. The coating stability is tested by dynamic flooding experiments. The surface wettability is characterized by measuring mineral oil-water contact angles. The results demonstrate the formation of nano- to micro-scale, fully-covered and stable mineral surfaces with varying wetting properties. There is an opportunity to use this work in the development of microfluidic technology-based applications for subsurface energy and environmental research.
A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29199291</pmid><doi>10.1039/c7lc00675f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2309-2388</orcidid><orcidid>https://orcid.org/0000-0002-6266-8271</orcidid><orcidid>https://orcid.org/0000-0003-1916-2678</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2018-01, Vol.18 (2), p.285-295 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_journals_2010862248 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Assembly Clay minerals Coatings Contact angle Dynamic stability Flooding Glass substrates Kaolinite Mineral oils Montmorillonite Polydimethylsiloxane Rocks Sandstone Semiconductors Silicone resins Wettability |
title | Geo-material surface modification of microchips using layer-by-layer (LbL) assembly for subsurface energy and environmental applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geo-material%20surface%20modification%20of%20microchips%20using%20layer-by-layer%20(LbL)%20assembly%20for%20subsurface%20energy%20and%20environmental%20applications&rft.jtitle=Lab%20on%20a%20chip&rft.au=Zhang,%20Y.%20Q&rft.date=2018-01-16&rft.volume=18&rft.issue=2&rft.spage=285&rft.epage=295&rft.pages=285-295&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c7lc00675f&rft_dat=%3Cproquest_cross%3E2010862248%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-40032ff3d419ed9cc80add5d0c633ba4bf46c5c85b2cff4717f5a9fa46dbbd963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2010862248&rft_id=info:pmid/29199291&rfr_iscdi=true |