Loading…
Low-cost palladium decorated on m-aminophenol-formaldehyde-derived porous carbon spheres for the enhanced catalytic reduction of organic dyes
We report the use of palladium nanoparticles (Pd NPs) immobilized on m-aminophenol/formaldehyde resin (APF)-derived porous carbon spheres (Pd@PCS) as heterogeneous catalysts for the reduction of organic dyes. The morphology, structure, surface compositions, and textural properties of PCS and the Pd@...
Saved in:
Published in: | Inorganic chemistry frontiers 2018-02, Vol.5 (2), p.354-363 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the use of palladium nanoparticles (Pd NPs) immobilized on m-aminophenol/formaldehyde resin (APF)-derived porous carbon spheres (Pd@PCS) as heterogeneous catalysts for the reduction of organic dyes. The morphology, structure, surface compositions, and textural properties of PCS and the Pd@PCS catalyst were characterized fully to document the excellent catalytic efficiency of Pd@PCS composites. Pd NPs of mean particle size ca. 12 ± 0.8 nm were highly dispersed on the surface of PCSs, and possessed surface area and pore volume as high as 896.3 m2 g−1 and 0.934 cm3 g−1, respectively. Prepared catalysts were applied to the reduction of various organic dyes; high catalytic activity towards crystal violet, eosin yellow and sunset yellow was observed. More importantly, the catalysts could be recovered readily, and reused many times with good stability. Therefore, the robust material utilized for the treatment of containing organic dyes could be used widely for environmental applications. |
---|---|
ISSN: | 2052-1545 2052-1553 |
DOI: | 10.1039/c7qi00553a |