Loading…
This Mechanistic Step Is ''Productive'': Organic Chemistry Students' Backward-Oriented Reasoning
If an organic chemistry student explains that she represents a mechanistic step because ''it's a productive part of the mechanism,'' what meaning could the professor teaching the class attribute to this statement, what is actually communicated, and what does it mean for the...
Saved in:
Published in: | Chemistry Education Research and Practice 2018-01, Vol.19 (1), p.42-59 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | If an organic chemistry student explains that she represents a mechanistic step because ''it's a productive part of the mechanism,'' what meaning could the professor teaching the class attribute to this statement, what is actually communicated, and what does it mean for the student? The professor might think that the explanation is based on knowledge of equilibria of alternative steps. The professor might also assume that the student implies information about how one of the alternatives influences the energetics of subsequent steps or how subsequent steps influence the equilibria of the alternatives. Meanwhile, the student might literally mean that the step is represented simply because it leads to the product. Reasoning about energetic influences has much greater explanatory power than teleological reasoning taking the consequence of mechanistic steps as the reason for their prediction. In both cases, however, the same backward-oriented reasoning is applied. Information about subsequent parts in the mechanism is used to make a decision about prior parts. To qualitatively compare the reasoning patterns and the causality employed by students and expected by their professor, we used a mechanistic approach from philosophy of science that mirrors the directionality of a mechanism and its components: activities, entities, and their properties. Our analysis led to the identification of different reasoning patterns involving backward-oriented reasoning. Participants' use of properties gave additional insight into the students' reasoning and their professor's expectations, which supports the necessity for clear expectations in mechanistic reasoning in organic chemistry classrooms. We present a framework that offers a lens to clarify these expectations and discuss implications of the framework for improving student mechanistic reasoning in organic chemistry. |
---|---|
ISSN: | 1756-1108 1109-4028 1109-4028 1756-1108 |
DOI: | 10.1039/c7rp00124j |