Loading…

Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis

Co phosphides, although highly active for the hydrogen evolution electrocatalysis in acids, still deliver inferior performance in alkalis, limiting their application in alkaline water electrolysis. Building an effective Co phosphide/(hydroxide)oxide interface could be a viable way to improve the hyd...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (5), p.1985-1990
Main Authors: Zhang, Rong, Ren, Xiang, Shuai Hao, Ge, Ruixiang, Liu, Zhiang, Asiri, Abdullah M, Chen, Liang, Zhang, Qiuju, Sun, Xuping
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1990
container_issue 5
container_start_page 1985
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Zhang, Rong
Ren, Xiang
Shuai Hao
Ge, Ruixiang
Liu, Zhiang
Asiri, Abdullah M
Chen, Liang
Zhang, Qiuju
Sun, Xuping
description Co phosphides, although highly active for the hydrogen evolution electrocatalysis in acids, still deliver inferior performance in alkalis, limiting their application in alkaline water electrolysis. Building an effective Co phosphide/(hydroxide)oxide interface could be a viable way to improve the hydrogen evolution activity of Co phosphide catalysts under alkaline conditions, which however remains unexplored and challenging. In this communication, we report the facile development of a CoP–CeO2 hybrid nanosheet film on Ti mesh (CoP–CeO2/Ti) from easily made Co3O4–CeO2via a selective phosphidation strategy. In 1.0 M KOH, such CoP–CeO2/Ti achieves a geometrical catalytic current density of 10 mA cm−2 at a pretty low overpotential of 43 mV, 27 mV less than that for CoP/Ti. Remarkably, our CoP–CeO2/Ti also shows superior durability over CoP/Ti, suggesting that CeO2 greatly stabilizes the CoP catalyst. Density functional theory calculations demonstrate that CoP–CeO2 possesses a lower water dissociation free energy and a more optimal hydrogen adsorption free energy than CoP. This selective phosphidation strategy is universal in engineering the transition metal phosphide/oxide interface for applications.
doi_str_mv 10.1039/c7ta10237b
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2010903184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010903184</sourcerecordid><originalsourceid>FETCH-LOGICAL-g286t-95a49a3f1d060cccf8da58b403dcb928c63cfeb27f7c891be623a236ad3774803</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOZe_AQBn-tuk65NfJPhPxhMUJ_HbXrTdZamJulkX8LPbNXhebnncuD84DB2mcJ1ClLPTRExBSGL8oRNBCwgKTKdn_57pc7ZLIQdjFIAudYT9vVCLZnY7In3Wxf6bVNhbFx3w7HjZO0xC9FjpPrAo_tEX_Gle54vaS1400XyFg1x6uqmI_JNV3PrPA9DPz6jwfYd2zHi20PlXU1j7961ww-F_8K9MxixPYQmXLAzi22g2fFO2dv93evyMVmtH56Wt6ukFiqPiV5gplHatIIcjDFWVbhQZQayMqUWyuTSWCpFYQujdFpSLiQKmWMli3EHkFN29dfbe_cxUIibnRt8NyI3AlLQIFOVyW-yXmoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010903184</pqid></control><display><type>article</type><title>Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis</title><source>Royal Society of Chemistry</source><creator>Zhang, Rong ; Ren, Xiang ; Shuai Hao ; Ge, Ruixiang ; Liu, Zhiang ; Asiri, Abdullah M ; Chen, Liang ; Zhang, Qiuju ; Sun, Xuping</creator><creatorcontrib>Zhang, Rong ; Ren, Xiang ; Shuai Hao ; Ge, Ruixiang ; Liu, Zhiang ; Asiri, Abdullah M ; Chen, Liang ; Zhang, Qiuju ; Sun, Xuping</creatorcontrib><description>Co phosphides, although highly active for the hydrogen evolution electrocatalysis in acids, still deliver inferior performance in alkalis, limiting their application in alkaline water electrolysis. Building an effective Co phosphide/(hydroxide)oxide interface could be a viable way to improve the hydrogen evolution activity of Co phosphide catalysts under alkaline conditions, which however remains unexplored and challenging. In this communication, we report the facile development of a CoP–CeO2 hybrid nanosheet film on Ti mesh (CoP–CeO2/Ti) from easily made Co3O4–CeO2via a selective phosphidation strategy. In 1.0 M KOH, such CoP–CeO2/Ti achieves a geometrical catalytic current density of 10 mA cm−2 at a pretty low overpotential of 43 mV, 27 mV less than that for CoP/Ti. Remarkably, our CoP–CeO2/Ti also shows superior durability over CoP/Ti, suggesting that CeO2 greatly stabilizes the CoP catalyst. Density functional theory calculations demonstrate that CoP–CeO2 possesses a lower water dissociation free energy and a more optimal hydrogen adsorption free energy than CoP. This selective phosphidation strategy is universal in engineering the transition metal phosphide/oxide interface for applications.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c7ta10237b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkalies ; Alkaline water ; Alkalis ; Catalysis ; Catalysts ; Cerium oxides ; Cobalt oxides ; Density functional theory ; Durability ; Electrocatalysis ; Electrolysis ; Energy of dissociation ; Engineering ; Evolution ; Free energy ; Hydrogen ; Hydrogen evolution ; Hydrogen-based energy ; Phosphides ; Strategy ; Titanium</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (5), p.1985-1990</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Rong</creatorcontrib><creatorcontrib>Ren, Xiang</creatorcontrib><creatorcontrib>Shuai Hao</creatorcontrib><creatorcontrib>Ge, Ruixiang</creatorcontrib><creatorcontrib>Liu, Zhiang</creatorcontrib><creatorcontrib>Asiri, Abdullah M</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Zhang, Qiuju</creatorcontrib><creatorcontrib>Sun, Xuping</creatorcontrib><title>Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Co phosphides, although highly active for the hydrogen evolution electrocatalysis in acids, still deliver inferior performance in alkalis, limiting their application in alkaline water electrolysis. Building an effective Co phosphide/(hydroxide)oxide interface could be a viable way to improve the hydrogen evolution activity of Co phosphide catalysts under alkaline conditions, which however remains unexplored and challenging. In this communication, we report the facile development of a CoP–CeO2 hybrid nanosheet film on Ti mesh (CoP–CeO2/Ti) from easily made Co3O4–CeO2via a selective phosphidation strategy. In 1.0 M KOH, such CoP–CeO2/Ti achieves a geometrical catalytic current density of 10 mA cm−2 at a pretty low overpotential of 43 mV, 27 mV less than that for CoP/Ti. Remarkably, our CoP–CeO2/Ti also shows superior durability over CoP/Ti, suggesting that CeO2 greatly stabilizes the CoP catalyst. Density functional theory calculations demonstrate that CoP–CeO2 possesses a lower water dissociation free energy and a more optimal hydrogen adsorption free energy than CoP. This selective phosphidation strategy is universal in engineering the transition metal phosphide/oxide interface for applications.</description><subject>Alkalies</subject><subject>Alkaline water</subject><subject>Alkalis</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cerium oxides</subject><subject>Cobalt oxides</subject><subject>Density functional theory</subject><subject>Durability</subject><subject>Electrocatalysis</subject><subject>Electrolysis</subject><subject>Energy of dissociation</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Free energy</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Hydrogen-based energy</subject><subject>Phosphides</subject><subject>Strategy</subject><subject>Titanium</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOZe_AQBn-tuk65NfJPhPxhMUJ_HbXrTdZamJulkX8LPbNXhebnncuD84DB2mcJ1ClLPTRExBSGL8oRNBCwgKTKdn_57pc7ZLIQdjFIAudYT9vVCLZnY7In3Wxf6bVNhbFx3w7HjZO0xC9FjpPrAo_tEX_Gle54vaS1400XyFg1x6uqmI_JNV3PrPA9DPz6jwfYd2zHi20PlXU1j7961ww-F_8K9MxixPYQmXLAzi22g2fFO2dv93evyMVmtH56Wt6ukFiqPiV5gplHatIIcjDFWVbhQZQayMqUWyuTSWCpFYQujdFpSLiQKmWMli3EHkFN29dfbe_cxUIibnRt8NyI3AlLQIFOVyW-yXmoM</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Zhang, Rong</creator><creator>Ren, Xiang</creator><creator>Shuai Hao</creator><creator>Ge, Ruixiang</creator><creator>Liu, Zhiang</creator><creator>Asiri, Abdullah M</creator><creator>Chen, Liang</creator><creator>Zhang, Qiuju</creator><creator>Sun, Xuping</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2018</creationdate><title>Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis</title><author>Zhang, Rong ; Ren, Xiang ; Shuai Hao ; Ge, Ruixiang ; Liu, Zhiang ; Asiri, Abdullah M ; Chen, Liang ; Zhang, Qiuju ; Sun, Xuping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g286t-95a49a3f1d060cccf8da58b403dcb928c63cfeb27f7c891be623a236ad3774803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alkalies</topic><topic>Alkaline water</topic><topic>Alkalis</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cerium oxides</topic><topic>Cobalt oxides</topic><topic>Density functional theory</topic><topic>Durability</topic><topic>Electrocatalysis</topic><topic>Electrolysis</topic><topic>Energy of dissociation</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Free energy</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Hydrogen-based energy</topic><topic>Phosphides</topic><topic>Strategy</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Rong</creatorcontrib><creatorcontrib>Ren, Xiang</creatorcontrib><creatorcontrib>Shuai Hao</creatorcontrib><creatorcontrib>Ge, Ruixiang</creatorcontrib><creatorcontrib>Liu, Zhiang</creatorcontrib><creatorcontrib>Asiri, Abdullah M</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Zhang, Qiuju</creatorcontrib><creatorcontrib>Sun, Xuping</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Rong</au><au>Ren, Xiang</au><au>Shuai Hao</au><au>Ge, Ruixiang</au><au>Liu, Zhiang</au><au>Asiri, Abdullah M</au><au>Chen, Liang</au><au>Zhang, Qiuju</au><au>Sun, Xuping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>5</issue><spage>1985</spage><epage>1990</epage><pages>1985-1990</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Co phosphides, although highly active for the hydrogen evolution electrocatalysis in acids, still deliver inferior performance in alkalis, limiting their application in alkaline water electrolysis. Building an effective Co phosphide/(hydroxide)oxide interface could be a viable way to improve the hydrogen evolution activity of Co phosphide catalysts under alkaline conditions, which however remains unexplored and challenging. In this communication, we report the facile development of a CoP–CeO2 hybrid nanosheet film on Ti mesh (CoP–CeO2/Ti) from easily made Co3O4–CeO2via a selective phosphidation strategy. In 1.0 M KOH, such CoP–CeO2/Ti achieves a geometrical catalytic current density of 10 mA cm−2 at a pretty low overpotential of 43 mV, 27 mV less than that for CoP/Ti. Remarkably, our CoP–CeO2/Ti also shows superior durability over CoP/Ti, suggesting that CeO2 greatly stabilizes the CoP catalyst. Density functional theory calculations demonstrate that CoP–CeO2 possesses a lower water dissociation free energy and a more optimal hydrogen adsorption free energy than CoP. This selective phosphidation strategy is universal in engineering the transition metal phosphide/oxide interface for applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7ta10237b</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (5), p.1985-1990
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2010903184
source Royal Society of Chemistry
subjects Alkalies
Alkaline water
Alkalis
Catalysis
Catalysts
Cerium oxides
Cobalt oxides
Density functional theory
Durability
Electrocatalysis
Electrolysis
Energy of dissociation
Engineering
Evolution
Free energy
Hydrogen
Hydrogen evolution
Hydrogen-based energy
Phosphides
Strategy
Titanium
title Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20phosphidation:%20an%20effective%20strategy%20toward%20CoP/CeO2%20interface%20engineering%20for%20superior%20alkaline%20hydrogen%20evolution%20electrocatalysis&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhang,%20Rong&rft.date=2018&rft.volume=6&rft.issue=5&rft.spage=1985&rft.epage=1990&rft.pages=1985-1990&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c7ta10237b&rft_dat=%3Cproquest%3E2010903184%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g286t-95a49a3f1d060cccf8da58b403dcb928c63cfeb27f7c891be623a236ad3774803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2010903184&rft_id=info:pmid/&rfr_iscdi=true