Loading…
Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis
Co phosphides, although highly active for the hydrogen evolution electrocatalysis in acids, still deliver inferior performance in alkalis, limiting their application in alkaline water electrolysis. Building an effective Co phosphide/(hydroxide)oxide interface could be a viable way to improve the hyd...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (5), p.1985-1990 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1990 |
container_issue | 5 |
container_start_page | 1985 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 6 |
creator | Zhang, Rong Ren, Xiang Shuai Hao Ge, Ruixiang Liu, Zhiang Asiri, Abdullah M Chen, Liang Zhang, Qiuju Sun, Xuping |
description | Co phosphides, although highly active for the hydrogen evolution electrocatalysis in acids, still deliver inferior performance in alkalis, limiting their application in alkaline water electrolysis. Building an effective Co phosphide/(hydroxide)oxide interface could be a viable way to improve the hydrogen evolution activity of Co phosphide catalysts under alkaline conditions, which however remains unexplored and challenging. In this communication, we report the facile development of a CoP–CeO2 hybrid nanosheet film on Ti mesh (CoP–CeO2/Ti) from easily made Co3O4–CeO2via a selective phosphidation strategy. In 1.0 M KOH, such CoP–CeO2/Ti achieves a geometrical catalytic current density of 10 mA cm−2 at a pretty low overpotential of 43 mV, 27 mV less than that for CoP/Ti. Remarkably, our CoP–CeO2/Ti also shows superior durability over CoP/Ti, suggesting that CeO2 greatly stabilizes the CoP catalyst. Density functional theory calculations demonstrate that CoP–CeO2 possesses a lower water dissociation free energy and a more optimal hydrogen adsorption free energy than CoP. This selective phosphidation strategy is universal in engineering the transition metal phosphide/oxide interface for applications. |
doi_str_mv | 10.1039/c7ta10237b |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2010903184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010903184</sourcerecordid><originalsourceid>FETCH-LOGICAL-g286t-95a49a3f1d060cccf8da58b403dcb928c63cfeb27f7c891be623a236ad3774803</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOZe_AQBn-tuk65NfJPhPxhMUJ_HbXrTdZamJulkX8LPbNXhebnncuD84DB2mcJ1ClLPTRExBSGL8oRNBCwgKTKdn_57pc7ZLIQdjFIAudYT9vVCLZnY7In3Wxf6bVNhbFx3w7HjZO0xC9FjpPrAo_tEX_Gle54vaS1400XyFg1x6uqmI_JNV3PrPA9DPz6jwfYd2zHi20PlXU1j7961ww-F_8K9MxixPYQmXLAzi22g2fFO2dv93evyMVmtH56Wt6ukFiqPiV5gplHatIIcjDFWVbhQZQayMqUWyuTSWCpFYQujdFpSLiQKmWMli3EHkFN29dfbe_cxUIibnRt8NyI3AlLQIFOVyW-yXmoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010903184</pqid></control><display><type>article</type><title>Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis</title><source>Royal Society of Chemistry</source><creator>Zhang, Rong ; Ren, Xiang ; Shuai Hao ; Ge, Ruixiang ; Liu, Zhiang ; Asiri, Abdullah M ; Chen, Liang ; Zhang, Qiuju ; Sun, Xuping</creator><creatorcontrib>Zhang, Rong ; Ren, Xiang ; Shuai Hao ; Ge, Ruixiang ; Liu, Zhiang ; Asiri, Abdullah M ; Chen, Liang ; Zhang, Qiuju ; Sun, Xuping</creatorcontrib><description>Co phosphides, although highly active for the hydrogen evolution electrocatalysis in acids, still deliver inferior performance in alkalis, limiting their application in alkaline water electrolysis. Building an effective Co phosphide/(hydroxide)oxide interface could be a viable way to improve the hydrogen evolution activity of Co phosphide catalysts under alkaline conditions, which however remains unexplored and challenging. In this communication, we report the facile development of a CoP–CeO2 hybrid nanosheet film on Ti mesh (CoP–CeO2/Ti) from easily made Co3O4–CeO2via a selective phosphidation strategy. In 1.0 M KOH, such CoP–CeO2/Ti achieves a geometrical catalytic current density of 10 mA cm−2 at a pretty low overpotential of 43 mV, 27 mV less than that for CoP/Ti. Remarkably, our CoP–CeO2/Ti also shows superior durability over CoP/Ti, suggesting that CeO2 greatly stabilizes the CoP catalyst. Density functional theory calculations demonstrate that CoP–CeO2 possesses a lower water dissociation free energy and a more optimal hydrogen adsorption free energy than CoP. This selective phosphidation strategy is universal in engineering the transition metal phosphide/oxide interface for applications.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c7ta10237b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkalies ; Alkaline water ; Alkalis ; Catalysis ; Catalysts ; Cerium oxides ; Cobalt oxides ; Density functional theory ; Durability ; Electrocatalysis ; Electrolysis ; Energy of dissociation ; Engineering ; Evolution ; Free energy ; Hydrogen ; Hydrogen evolution ; Hydrogen-based energy ; Phosphides ; Strategy ; Titanium</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (5), p.1985-1990</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Rong</creatorcontrib><creatorcontrib>Ren, Xiang</creatorcontrib><creatorcontrib>Shuai Hao</creatorcontrib><creatorcontrib>Ge, Ruixiang</creatorcontrib><creatorcontrib>Liu, Zhiang</creatorcontrib><creatorcontrib>Asiri, Abdullah M</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Zhang, Qiuju</creatorcontrib><creatorcontrib>Sun, Xuping</creatorcontrib><title>Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Co phosphides, although highly active for the hydrogen evolution electrocatalysis in acids, still deliver inferior performance in alkalis, limiting their application in alkaline water electrolysis. Building an effective Co phosphide/(hydroxide)oxide interface could be a viable way to improve the hydrogen evolution activity of Co phosphide catalysts under alkaline conditions, which however remains unexplored and challenging. In this communication, we report the facile development of a CoP–CeO2 hybrid nanosheet film on Ti mesh (CoP–CeO2/Ti) from easily made Co3O4–CeO2via a selective phosphidation strategy. In 1.0 M KOH, such CoP–CeO2/Ti achieves a geometrical catalytic current density of 10 mA cm−2 at a pretty low overpotential of 43 mV, 27 mV less than that for CoP/Ti. Remarkably, our CoP–CeO2/Ti also shows superior durability over CoP/Ti, suggesting that CeO2 greatly stabilizes the CoP catalyst. Density functional theory calculations demonstrate that CoP–CeO2 possesses a lower water dissociation free energy and a more optimal hydrogen adsorption free energy than CoP. This selective phosphidation strategy is universal in engineering the transition metal phosphide/oxide interface for applications.</description><subject>Alkalies</subject><subject>Alkaline water</subject><subject>Alkalis</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cerium oxides</subject><subject>Cobalt oxides</subject><subject>Density functional theory</subject><subject>Durability</subject><subject>Electrocatalysis</subject><subject>Electrolysis</subject><subject>Energy of dissociation</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Free energy</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Hydrogen-based energy</subject><subject>Phosphides</subject><subject>Strategy</subject><subject>Titanium</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOZe_AQBn-tuk65NfJPhPxhMUJ_HbXrTdZamJulkX8LPbNXhebnncuD84DB2mcJ1ClLPTRExBSGL8oRNBCwgKTKdn_57pc7ZLIQdjFIAudYT9vVCLZnY7In3Wxf6bVNhbFx3w7HjZO0xC9FjpPrAo_tEX_Gle54vaS1400XyFg1x6uqmI_JNV3PrPA9DPz6jwfYd2zHi20PlXU1j7961ww-F_8K9MxixPYQmXLAzi22g2fFO2dv93evyMVmtH56Wt6ukFiqPiV5gplHatIIcjDFWVbhQZQayMqUWyuTSWCpFYQujdFpSLiQKmWMli3EHkFN29dfbe_cxUIibnRt8NyI3AlLQIFOVyW-yXmoM</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Zhang, Rong</creator><creator>Ren, Xiang</creator><creator>Shuai Hao</creator><creator>Ge, Ruixiang</creator><creator>Liu, Zhiang</creator><creator>Asiri, Abdullah M</creator><creator>Chen, Liang</creator><creator>Zhang, Qiuju</creator><creator>Sun, Xuping</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2018</creationdate><title>Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis</title><author>Zhang, Rong ; Ren, Xiang ; Shuai Hao ; Ge, Ruixiang ; Liu, Zhiang ; Asiri, Abdullah M ; Chen, Liang ; Zhang, Qiuju ; Sun, Xuping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g286t-95a49a3f1d060cccf8da58b403dcb928c63cfeb27f7c891be623a236ad3774803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alkalies</topic><topic>Alkaline water</topic><topic>Alkalis</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cerium oxides</topic><topic>Cobalt oxides</topic><topic>Density functional theory</topic><topic>Durability</topic><topic>Electrocatalysis</topic><topic>Electrolysis</topic><topic>Energy of dissociation</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Free energy</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Hydrogen-based energy</topic><topic>Phosphides</topic><topic>Strategy</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Rong</creatorcontrib><creatorcontrib>Ren, Xiang</creatorcontrib><creatorcontrib>Shuai Hao</creatorcontrib><creatorcontrib>Ge, Ruixiang</creatorcontrib><creatorcontrib>Liu, Zhiang</creatorcontrib><creatorcontrib>Asiri, Abdullah M</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Zhang, Qiuju</creatorcontrib><creatorcontrib>Sun, Xuping</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Rong</au><au>Ren, Xiang</au><au>Shuai Hao</au><au>Ge, Ruixiang</au><au>Liu, Zhiang</au><au>Asiri, Abdullah M</au><au>Chen, Liang</au><au>Zhang, Qiuju</au><au>Sun, Xuping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>5</issue><spage>1985</spage><epage>1990</epage><pages>1985-1990</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Co phosphides, although highly active for the hydrogen evolution electrocatalysis in acids, still deliver inferior performance in alkalis, limiting their application in alkaline water electrolysis. Building an effective Co phosphide/(hydroxide)oxide interface could be a viable way to improve the hydrogen evolution activity of Co phosphide catalysts under alkaline conditions, which however remains unexplored and challenging. In this communication, we report the facile development of a CoP–CeO2 hybrid nanosheet film on Ti mesh (CoP–CeO2/Ti) from easily made Co3O4–CeO2via a selective phosphidation strategy. In 1.0 M KOH, such CoP–CeO2/Ti achieves a geometrical catalytic current density of 10 mA cm−2 at a pretty low overpotential of 43 mV, 27 mV less than that for CoP/Ti. Remarkably, our CoP–CeO2/Ti also shows superior durability over CoP/Ti, suggesting that CeO2 greatly stabilizes the CoP catalyst. Density functional theory calculations demonstrate that CoP–CeO2 possesses a lower water dissociation free energy and a more optimal hydrogen adsorption free energy than CoP. This selective phosphidation strategy is universal in engineering the transition metal phosphide/oxide interface for applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7ta10237b</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (5), p.1985-1990 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2010903184 |
source | Royal Society of Chemistry |
subjects | Alkalies Alkaline water Alkalis Catalysis Catalysts Cerium oxides Cobalt oxides Density functional theory Durability Electrocatalysis Electrolysis Energy of dissociation Engineering Evolution Free energy Hydrogen Hydrogen evolution Hydrogen-based energy Phosphides Strategy Titanium |
title | Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20phosphidation:%20an%20effective%20strategy%20toward%20CoP/CeO2%20interface%20engineering%20for%20superior%20alkaline%20hydrogen%20evolution%20electrocatalysis&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhang,%20Rong&rft.date=2018&rft.volume=6&rft.issue=5&rft.spage=1985&rft.epage=1990&rft.pages=1985-1990&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c7ta10237b&rft_dat=%3Cproquest%3E2010903184%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g286t-95a49a3f1d060cccf8da58b403dcb928c63cfeb27f7c891be623a236ad3774803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2010903184&rft_id=info:pmid/&rfr_iscdi=true |