Loading…

Novel dendritic large molecules as solution-processable thermally activated delayed fluorescent emitters for simple structured non-doped organic light emitting diodes

Solution-processable thermally activated delayed fluorescence (TADF)-assisted materials have been identified as promising materials for future applications as organic light-emitting diodes (OLEDs) owing to their numerous advantageous such as easy fabrication, large area applications, low cost, and s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2018, Vol.6 (5), p.116-117
Main Authors: Godumala, Mallesham, Choi, Suna, Kim, Hyung Jong, Lee, Chiho, Park, Sungnam, Moon, Ji Su, Si Woo, Kim, Kwon, Jang Hyuk, Cho, Min Ju, Choi, Dong Hoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-22af59fdfbfca3c95b32e71e5374501b64ec40e8bcdfbd1a14f7fe01d34b2ef93
cites cdi_FETCH-LOGICAL-c347t-22af59fdfbfca3c95b32e71e5374501b64ec40e8bcdfbd1a14f7fe01d34b2ef93
container_end_page 117
container_issue 5
container_start_page 116
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 6
creator Godumala, Mallesham
Choi, Suna
Kim, Hyung Jong
Lee, Chiho
Park, Sungnam
Moon, Ji Su
Si Woo, Kim
Kwon, Jang Hyuk
Cho, Min Ju
Choi, Dong Hoon
description Solution-processable thermally activated delayed fluorescence (TADF)-assisted materials have been identified as promising materials for future applications as organic light-emitting diodes (OLEDs) owing to their numerous advantageous such as easy fabrication, large area applications, low cost, and state-of-the-art performance. Herein, two new carbazole-dendronized TADF emitters, namely, TB2CZ-ACTRZ and TB14CZ-ACTRZ , were designed and synthesized. Two different-sized carbazole dendron wedges were utilized as the encapsulating groups for the TADF core via methylene groups. The influence of the encapsulated dendrons on the thermal, optical, electrochemical, and OLED device performances of both dendritic molecules was studied in detail. The photophysical studies of TB2CZ-ACTRZ and TB14CZ-ACTRZ disclosed their extremely small singlet-triplet energy gaps (Δ E ST ) of 79 and 134 meV, respectively. Consequently, the solution-processed non-doped OLEDs without any hole injection/transport layers featuring TB2CZ-ACTRZ and TB14CZ-ACTRZ as the TADF emitters demonstrated the maximum external quantum efficiencies (EQEs) of 9.5 and 8.1%, respectively, while the device fabricated with their simple emissive core ACTRZ had an EQE of only 1.2%. These results clearly demonstrated that the development of multifunctional TADF dendritic emitters is an extremely worthwhile objective for the realization of highly efficient solution-processable non-doped OLEDs with simple device architectures. The structural optimization of a TADF emissive core with suitable dendrons leads to simple structured solution processable non-doped OLEDs with superior performances.
doi_str_mv 10.1039/c7tc04460g
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010905764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010905764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-22af59fdfbfca3c95b32e71e5374501b64ec40e8bcdfbd1a14f7fe01d34b2ef93</originalsourceid><addsrcrecordid>eNpFkU9LxDAQxYsoKOtevAsBb0I1adJ2e5TFfyB60XNJk0k3S9qsmXRhv5Cf06wrOpc3h9-8meFl2QWjN4zy5lbVUVEhKtofZWcFLWlel1wc__VFdZrNEdc01YJVi6o5y75e_RYc0TDqYKNVxMnQAxm8AzU5QCKRoHdTtH7MN8ErQJSdAxJXEAbp3I5IFe1WRtDJxcldUuMmHwAVjJHAYGOEgMT4QNAOmzSLMUwqTiGhY7LVfpM6H3o57g-w_ep3zI490dZrwPPsxEiHMP_VWfbxcP--fMpf3h6fl3cvueKijnlRSFM2RpvOKMlVU3a8gJpByWtRUtZVApSgsOhUQjSTTJjaAGWai64A0_BZdnXwTa9-ToCxXfspjGllW1BGG1rWlUjU9YFSwSMGMO0m2EGGXctou4-iXdbvy58oHhN8eYADqj_uPyr-Dflli-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010905764</pqid></control><display><type>article</type><title>Novel dendritic large molecules as solution-processable thermally activated delayed fluorescent emitters for simple structured non-doped organic light emitting diodes</title><source>Royal Society of Chemistry</source><creator>Godumala, Mallesham ; Choi, Suna ; Kim, Hyung Jong ; Lee, Chiho ; Park, Sungnam ; Moon, Ji Su ; Si Woo, Kim ; Kwon, Jang Hyuk ; Cho, Min Ju ; Choi, Dong Hoon</creator><creatorcontrib>Godumala, Mallesham ; Choi, Suna ; Kim, Hyung Jong ; Lee, Chiho ; Park, Sungnam ; Moon, Ji Su ; Si Woo, Kim ; Kwon, Jang Hyuk ; Cho, Min Ju ; Choi, Dong Hoon</creatorcontrib><description>Solution-processable thermally activated delayed fluorescence (TADF)-assisted materials have been identified as promising materials for future applications as organic light-emitting diodes (OLEDs) owing to their numerous advantageous such as easy fabrication, large area applications, low cost, and state-of-the-art performance. Herein, two new carbazole-dendronized TADF emitters, namely, TB2CZ-ACTRZ and TB14CZ-ACTRZ , were designed and synthesized. Two different-sized carbazole dendron wedges were utilized as the encapsulating groups for the TADF core via methylene groups. The influence of the encapsulated dendrons on the thermal, optical, electrochemical, and OLED device performances of both dendritic molecules was studied in detail. The photophysical studies of TB2CZ-ACTRZ and TB14CZ-ACTRZ disclosed their extremely small singlet-triplet energy gaps (Δ E ST ) of 79 and 134 meV, respectively. Consequently, the solution-processed non-doped OLEDs without any hole injection/transport layers featuring TB2CZ-ACTRZ and TB14CZ-ACTRZ as the TADF emitters demonstrated the maximum external quantum efficiencies (EQEs) of 9.5 and 8.1%, respectively, while the device fabricated with their simple emissive core ACTRZ had an EQE of only 1.2%. These results clearly demonstrated that the development of multifunctional TADF dendritic emitters is an extremely worthwhile objective for the realization of highly efficient solution-processable non-doped OLEDs with simple device architectures. The structural optimization of a TADF emissive core with suitable dendrons leads to simple structured solution processable non-doped OLEDs with superior performances.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c7tc04460g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbazoles ; Dendritic structure ; Emitters ; Encapsulation ; Energy gap ; Fluorescence ; Light emitting diodes ; Organic light emitting diodes</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2018, Vol.6 (5), p.116-117</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-22af59fdfbfca3c95b32e71e5374501b64ec40e8bcdfbd1a14f7fe01d34b2ef93</citedby><cites>FETCH-LOGICAL-c347t-22af59fdfbfca3c95b32e71e5374501b64ec40e8bcdfbd1a14f7fe01d34b2ef93</cites><orcidid>0000-0002-3165-0597 ; 0000-0002-1743-1486 ; 0000-0001-6288-4620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Godumala, Mallesham</creatorcontrib><creatorcontrib>Choi, Suna</creatorcontrib><creatorcontrib>Kim, Hyung Jong</creatorcontrib><creatorcontrib>Lee, Chiho</creatorcontrib><creatorcontrib>Park, Sungnam</creatorcontrib><creatorcontrib>Moon, Ji Su</creatorcontrib><creatorcontrib>Si Woo, Kim</creatorcontrib><creatorcontrib>Kwon, Jang Hyuk</creatorcontrib><creatorcontrib>Cho, Min Ju</creatorcontrib><creatorcontrib>Choi, Dong Hoon</creatorcontrib><title>Novel dendritic large molecules as solution-processable thermally activated delayed fluorescent emitters for simple structured non-doped organic light emitting diodes</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Solution-processable thermally activated delayed fluorescence (TADF)-assisted materials have been identified as promising materials for future applications as organic light-emitting diodes (OLEDs) owing to their numerous advantageous such as easy fabrication, large area applications, low cost, and state-of-the-art performance. Herein, two new carbazole-dendronized TADF emitters, namely, TB2CZ-ACTRZ and TB14CZ-ACTRZ , were designed and synthesized. Two different-sized carbazole dendron wedges were utilized as the encapsulating groups for the TADF core via methylene groups. The influence of the encapsulated dendrons on the thermal, optical, electrochemical, and OLED device performances of both dendritic molecules was studied in detail. The photophysical studies of TB2CZ-ACTRZ and TB14CZ-ACTRZ disclosed their extremely small singlet-triplet energy gaps (Δ E ST ) of 79 and 134 meV, respectively. Consequently, the solution-processed non-doped OLEDs without any hole injection/transport layers featuring TB2CZ-ACTRZ and TB14CZ-ACTRZ as the TADF emitters demonstrated the maximum external quantum efficiencies (EQEs) of 9.5 and 8.1%, respectively, while the device fabricated with their simple emissive core ACTRZ had an EQE of only 1.2%. These results clearly demonstrated that the development of multifunctional TADF dendritic emitters is an extremely worthwhile objective for the realization of highly efficient solution-processable non-doped OLEDs with simple device architectures. The structural optimization of a TADF emissive core with suitable dendrons leads to simple structured solution processable non-doped OLEDs with superior performances.</description><subject>Carbazoles</subject><subject>Dendritic structure</subject><subject>Emitters</subject><subject>Encapsulation</subject><subject>Energy gap</subject><subject>Fluorescence</subject><subject>Light emitting diodes</subject><subject>Organic light emitting diodes</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkU9LxDAQxYsoKOtevAsBb0I1adJ2e5TFfyB60XNJk0k3S9qsmXRhv5Cf06wrOpc3h9-8meFl2QWjN4zy5lbVUVEhKtofZWcFLWlel1wc__VFdZrNEdc01YJVi6o5y75e_RYc0TDqYKNVxMnQAxm8AzU5QCKRoHdTtH7MN8ErQJSdAxJXEAbp3I5IFe1WRtDJxcldUuMmHwAVjJHAYGOEgMT4QNAOmzSLMUwqTiGhY7LVfpM6H3o57g-w_ep3zI490dZrwPPsxEiHMP_VWfbxcP--fMpf3h6fl3cvueKijnlRSFM2RpvOKMlVU3a8gJpByWtRUtZVApSgsOhUQjSTTJjaAGWai64A0_BZdnXwTa9-ToCxXfspjGllW1BGG1rWlUjU9YFSwSMGMO0m2EGGXctou4-iXdbvy58oHhN8eYADqj_uPyr-Dflli-I</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Godumala, Mallesham</creator><creator>Choi, Suna</creator><creator>Kim, Hyung Jong</creator><creator>Lee, Chiho</creator><creator>Park, Sungnam</creator><creator>Moon, Ji Su</creator><creator>Si Woo, Kim</creator><creator>Kwon, Jang Hyuk</creator><creator>Cho, Min Ju</creator><creator>Choi, Dong Hoon</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3165-0597</orcidid><orcidid>https://orcid.org/0000-0002-1743-1486</orcidid><orcidid>https://orcid.org/0000-0001-6288-4620</orcidid></search><sort><creationdate>2018</creationdate><title>Novel dendritic large molecules as solution-processable thermally activated delayed fluorescent emitters for simple structured non-doped organic light emitting diodes</title><author>Godumala, Mallesham ; Choi, Suna ; Kim, Hyung Jong ; Lee, Chiho ; Park, Sungnam ; Moon, Ji Su ; Si Woo, Kim ; Kwon, Jang Hyuk ; Cho, Min Ju ; Choi, Dong Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-22af59fdfbfca3c95b32e71e5374501b64ec40e8bcdfbd1a14f7fe01d34b2ef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbazoles</topic><topic>Dendritic structure</topic><topic>Emitters</topic><topic>Encapsulation</topic><topic>Energy gap</topic><topic>Fluorescence</topic><topic>Light emitting diodes</topic><topic>Organic light emitting diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godumala, Mallesham</creatorcontrib><creatorcontrib>Choi, Suna</creatorcontrib><creatorcontrib>Kim, Hyung Jong</creatorcontrib><creatorcontrib>Lee, Chiho</creatorcontrib><creatorcontrib>Park, Sungnam</creatorcontrib><creatorcontrib>Moon, Ji Su</creatorcontrib><creatorcontrib>Si Woo, Kim</creatorcontrib><creatorcontrib>Kwon, Jang Hyuk</creatorcontrib><creatorcontrib>Cho, Min Ju</creatorcontrib><creatorcontrib>Choi, Dong Hoon</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godumala, Mallesham</au><au>Choi, Suna</au><au>Kim, Hyung Jong</au><au>Lee, Chiho</au><au>Park, Sungnam</au><au>Moon, Ji Su</au><au>Si Woo, Kim</au><au>Kwon, Jang Hyuk</au><au>Cho, Min Ju</au><au>Choi, Dong Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel dendritic large molecules as solution-processable thermally activated delayed fluorescent emitters for simple structured non-doped organic light emitting diodes</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>5</issue><spage>116</spage><epage>117</epage><pages>116-117</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Solution-processable thermally activated delayed fluorescence (TADF)-assisted materials have been identified as promising materials for future applications as organic light-emitting diodes (OLEDs) owing to their numerous advantageous such as easy fabrication, large area applications, low cost, and state-of-the-art performance. Herein, two new carbazole-dendronized TADF emitters, namely, TB2CZ-ACTRZ and TB14CZ-ACTRZ , were designed and synthesized. Two different-sized carbazole dendron wedges were utilized as the encapsulating groups for the TADF core via methylene groups. The influence of the encapsulated dendrons on the thermal, optical, electrochemical, and OLED device performances of both dendritic molecules was studied in detail. The photophysical studies of TB2CZ-ACTRZ and TB14CZ-ACTRZ disclosed their extremely small singlet-triplet energy gaps (Δ E ST ) of 79 and 134 meV, respectively. Consequently, the solution-processed non-doped OLEDs without any hole injection/transport layers featuring TB2CZ-ACTRZ and TB14CZ-ACTRZ as the TADF emitters demonstrated the maximum external quantum efficiencies (EQEs) of 9.5 and 8.1%, respectively, while the device fabricated with their simple emissive core ACTRZ had an EQE of only 1.2%. These results clearly demonstrated that the development of multifunctional TADF dendritic emitters is an extremely worthwhile objective for the realization of highly efficient solution-processable non-doped OLEDs with simple device architectures. The structural optimization of a TADF emissive core with suitable dendrons leads to simple structured solution processable non-doped OLEDs with superior performances.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7tc04460g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3165-0597</orcidid><orcidid>https://orcid.org/0000-0002-1743-1486</orcidid><orcidid>https://orcid.org/0000-0001-6288-4620</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2018, Vol.6 (5), p.116-117
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2010905764
source Royal Society of Chemistry
subjects Carbazoles
Dendritic structure
Emitters
Encapsulation
Energy gap
Fluorescence
Light emitting diodes
Organic light emitting diodes
title Novel dendritic large molecules as solution-processable thermally activated delayed fluorescent emitters for simple structured non-doped organic light emitting diodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20dendritic%20large%20molecules%20as%20solution-processable%20thermally%20activated%20delayed%20fluorescent%20emitters%20for%20simple%20structured%20non-doped%20organic%20light%20emitting%20diodes&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Godumala,%20Mallesham&rft.date=2018&rft.volume=6&rft.issue=5&rft.spage=116&rft.epage=117&rft.pages=116-117&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c7tc04460g&rft_dat=%3Cproquest_cross%3E2010905764%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-22af59fdfbfca3c95b32e71e5374501b64ec40e8bcdfbd1a14f7fe01d34b2ef93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2010905764&rft_id=info:pmid/&rfr_iscdi=true