Loading…

New phase field model for simulating galvanic and pitting corrosion processes

This manuscript presents a new phase field model for simulating galvanic and pitting corrosion phenomena in metallic materials. The Laplace equation is employed to approximate the electric potential distribution, which determines the phase evolution by relating the anodic current density to the inte...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2018-01, Vol.260, p.290-304
Main Authors: Mai, Weijie, Soghrati, Soheil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-258cabfdd5aea106148b6b4f467b943e725b5646e6a6f6d007aa74c789d2176b3
cites cdi_FETCH-LOGICAL-c429t-258cabfdd5aea106148b6b4f467b943e725b5646e6a6f6d007aa74c789d2176b3
container_end_page 304
container_issue
container_start_page 290
container_title Electrochimica acta
container_volume 260
creator Mai, Weijie
Soghrati, Soheil
description This manuscript presents a new phase field model for simulating galvanic and pitting corrosion phenomena in metallic materials. The Laplace equation is employed to approximate the electric potential distribution, which determines the phase evolution by relating the anodic current density to the interface kinetics parameter. While the anode is assumed to be nonpolarizable, the nonlinear polarization behavior including the diffusion-limited kinetics is considered as boundary condition on the cathode. Several numerical examples are presented to verify the accuracy of the proposed model. We also demonstrate the application of this model for simulating coupled galvanic-pitting corrosion processes in a hybrid joint and an aluminum composite material under varying environmental conditions. The last example simulates the corrosion of a steel wire, which shows the feasibility of incorporating homogeneous chemical reactions and polarization behavior on the anode into the proposed model.
doi_str_mv 10.1016/j.electacta.2017.12.086
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2011247790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468617326464</els_id><sourcerecordid>2011247790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-258cabfdd5aea106148b6b4f467b943e725b5646e6a6f6d007aa74c789d2176b3</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4GAz63JmmatI9jqBOmvuhzSJPbmdI1Nekm_nszJ74KFy5cztc9CF1TklNCxW2XQw9m0mlyRqjMKctJJU7QjFayyIqqrE_RjBBaZFxU4hxdxNgRQqSQZIaenuETj-86Am4d9BZvvYUetz7g6La7Xk9u2OCN7vd6cAbrweLRTT9H40Pw0fkBj8EbiBHiJTprdR_h6nfP0dv93etyla1fHh6Xi3VmOKunjJWV0U1rbalBUyIorxrR8JYL2dS8AMnKphRcgNCiFTZl1VpyI6vaMipFU8zRzVE3OX_sIE6q87swJEuVKqCMS1mThJJHlEk5Y4BWjcFtdfhSlKhDd6pTf90diFJRplJ3ibk4MiE9sXcQVDQOBgPWhYRX1rt_Nb4ByDt8hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011247790</pqid></control><display><type>article</type><title>New phase field model for simulating galvanic and pitting corrosion processes</title><source>ScienceDirect Journals</source><creator>Mai, Weijie ; Soghrati, Soheil</creator><creatorcontrib>Mai, Weijie ; Soghrati, Soheil</creatorcontrib><description>This manuscript presents a new phase field model for simulating galvanic and pitting corrosion phenomena in metallic materials. The Laplace equation is employed to approximate the electric potential distribution, which determines the phase evolution by relating the anodic current density to the interface kinetics parameter. While the anode is assumed to be nonpolarizable, the nonlinear polarization behavior including the diffusion-limited kinetics is considered as boundary condition on the cathode. Several numerical examples are presented to verify the accuracy of the proposed model. We also demonstrate the application of this model for simulating coupled galvanic-pitting corrosion processes in a hybrid joint and an aluminum composite material under varying environmental conditions. The last example simulates the corrosion of a steel wire, which shows the feasibility of incorporating homogeneous chemical reactions and polarization behavior on the anode into the proposed model.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2017.12.086</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminum ; Anodes ; Anodic polarization ; Chemical reactions ; Composite materials ; Computer simulation ; Corrosion ; Electric power distribution ; Electric wire ; Finite element ; Galvanic corrosion ; Kinetics ; Laplace equation ; Laplace transforms ; Mathematical models ; Model accuracy ; Phase field ; Pitting ; Pitting corrosion ; Reaction kinetics ; Studies</subject><ispartof>Electrochimica acta, 2018-01, Vol.260, p.290-304</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-258cabfdd5aea106148b6b4f467b943e725b5646e6a6f6d007aa74c789d2176b3</citedby><cites>FETCH-LOGICAL-c429t-258cabfdd5aea106148b6b4f467b943e725b5646e6a6f6d007aa74c789d2176b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Mai, Weijie</creatorcontrib><creatorcontrib>Soghrati, Soheil</creatorcontrib><title>New phase field model for simulating galvanic and pitting corrosion processes</title><title>Electrochimica acta</title><description>This manuscript presents a new phase field model for simulating galvanic and pitting corrosion phenomena in metallic materials. The Laplace equation is employed to approximate the electric potential distribution, which determines the phase evolution by relating the anodic current density to the interface kinetics parameter. While the anode is assumed to be nonpolarizable, the nonlinear polarization behavior including the diffusion-limited kinetics is considered as boundary condition on the cathode. Several numerical examples are presented to verify the accuracy of the proposed model. We also demonstrate the application of this model for simulating coupled galvanic-pitting corrosion processes in a hybrid joint and an aluminum composite material under varying environmental conditions. The last example simulates the corrosion of a steel wire, which shows the feasibility of incorporating homogeneous chemical reactions and polarization behavior on the anode into the proposed model.</description><subject>Aluminum</subject><subject>Anodes</subject><subject>Anodic polarization</subject><subject>Chemical reactions</subject><subject>Composite materials</subject><subject>Computer simulation</subject><subject>Corrosion</subject><subject>Electric power distribution</subject><subject>Electric wire</subject><subject>Finite element</subject><subject>Galvanic corrosion</subject><subject>Kinetics</subject><subject>Laplace equation</subject><subject>Laplace transforms</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Phase field</subject><subject>Pitting</subject><subject>Pitting corrosion</subject><subject>Reaction kinetics</subject><subject>Studies</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LwzAUDaLgnP4GAz63JmmatI9jqBOmvuhzSJPbmdI1Nekm_nszJ74KFy5cztc9CF1TklNCxW2XQw9m0mlyRqjMKctJJU7QjFayyIqqrE_RjBBaZFxU4hxdxNgRQqSQZIaenuETj-86Am4d9BZvvYUetz7g6La7Xk9u2OCN7vd6cAbrweLRTT9H40Pw0fkBj8EbiBHiJTprdR_h6nfP0dv93etyla1fHh6Xi3VmOKunjJWV0U1rbalBUyIorxrR8JYL2dS8AMnKphRcgNCiFTZl1VpyI6vaMipFU8zRzVE3OX_sIE6q87swJEuVKqCMS1mThJJHlEk5Y4BWjcFtdfhSlKhDd6pTf90diFJRplJ3ibk4MiE9sXcQVDQOBgPWhYRX1rt_Nb4ByDt8hA</recordid><startdate>20180110</startdate><enddate>20180110</enddate><creator>Mai, Weijie</creator><creator>Soghrati, Soheil</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180110</creationdate><title>New phase field model for simulating galvanic and pitting corrosion processes</title><author>Mai, Weijie ; Soghrati, Soheil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-258cabfdd5aea106148b6b4f467b943e725b5646e6a6f6d007aa74c789d2176b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Anodes</topic><topic>Anodic polarization</topic><topic>Chemical reactions</topic><topic>Composite materials</topic><topic>Computer simulation</topic><topic>Corrosion</topic><topic>Electric power distribution</topic><topic>Electric wire</topic><topic>Finite element</topic><topic>Galvanic corrosion</topic><topic>Kinetics</topic><topic>Laplace equation</topic><topic>Laplace transforms</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Phase field</topic><topic>Pitting</topic><topic>Pitting corrosion</topic><topic>Reaction kinetics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mai, Weijie</creatorcontrib><creatorcontrib>Soghrati, Soheil</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mai, Weijie</au><au>Soghrati, Soheil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New phase field model for simulating galvanic and pitting corrosion processes</atitle><jtitle>Electrochimica acta</jtitle><date>2018-01-10</date><risdate>2018</risdate><volume>260</volume><spage>290</spage><epage>304</epage><pages>290-304</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>This manuscript presents a new phase field model for simulating galvanic and pitting corrosion phenomena in metallic materials. The Laplace equation is employed to approximate the electric potential distribution, which determines the phase evolution by relating the anodic current density to the interface kinetics parameter. While the anode is assumed to be nonpolarizable, the nonlinear polarization behavior including the diffusion-limited kinetics is considered as boundary condition on the cathode. Several numerical examples are presented to verify the accuracy of the proposed model. We also demonstrate the application of this model for simulating coupled galvanic-pitting corrosion processes in a hybrid joint and an aluminum composite material under varying environmental conditions. The last example simulates the corrosion of a steel wire, which shows the feasibility of incorporating homogeneous chemical reactions and polarization behavior on the anode into the proposed model.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2017.12.086</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2018-01, Vol.260, p.290-304
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2011247790
source ScienceDirect Journals
subjects Aluminum
Anodes
Anodic polarization
Chemical reactions
Composite materials
Computer simulation
Corrosion
Electric power distribution
Electric wire
Finite element
Galvanic corrosion
Kinetics
Laplace equation
Laplace transforms
Mathematical models
Model accuracy
Phase field
Pitting
Pitting corrosion
Reaction kinetics
Studies
title New phase field model for simulating galvanic and pitting corrosion processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20phase%20field%20model%20for%20simulating%20galvanic%20and%20pitting%20corrosion%20processes&rft.jtitle=Electrochimica%20acta&rft.au=Mai,%20Weijie&rft.date=2018-01-10&rft.volume=260&rft.spage=290&rft.epage=304&rft.pages=290-304&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2017.12.086&rft_dat=%3Cproquest_cross%3E2011247790%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-258cabfdd5aea106148b6b4f467b943e725b5646e6a6f6d007aa74c789d2176b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2011247790&rft_id=info:pmid/&rfr_iscdi=true