Loading…
Reading the Moon's volcanic record by ion microprobe analysis of Apollo 14 glass beads
The application of secondary ion mass spectrometry to lunar volcanic problems is demonstrated by individually analyzing representative glass from the seven Apollo 14 pyroclastic glass bead groups (black, orange, yellow, LAP, green A, VLT, and green B) for selected trace elements (e.g., rare earth el...
Saved in:
Published in: | Geology (Boulder) 1990-04, Vol.18 (4), p.295-298 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 298 |
container_issue | 4 |
container_start_page | 295 |
container_title | Geology (Boulder) |
container_volume | 18 |
creator | Papike, J. J Shearer, C. K Galbreath, Kevin C |
description | The application of secondary ion mass spectrometry to lunar volcanic problems is demonstrated by individually analyzing representative glass from the seven Apollo 14 pyroclastic glass bead groups (black, orange, yellow, LAP, green A, VLT, and green B) for selected trace elements (e.g., rare earth elements [REE], Ba, Sr, Zr, V, and Co). The trace element characteristics of glass beads are useful for differentiating impact from volcanic glass beads and identifying other volcanic glass types (e.g., LAP). Trace element modeling indicates that the bead groups are unrelated by low-pressure fractional crystallization to each other, to Apollo 14 crystalline basalts, or to basalts from other landing sites. A possible exception is the relation between LAP and Apollo 14 aluminous basalts. The absence of evolved basalts derived from primary magmas with volcanic glass compositions suggests either that these evolved basalts have not been sampled or that fire fountaining tapped mantle sources subtly different from crystalline mare-basalt source regions. Hybridization of mantle source regions is preferred to assimilation-fractional crystallization processes to explain the incorporation of the evolved potassium-REE-phosphorus (KREEP) component identified in these primitive magmas. Apollo 14 volcanic glass and mare basalt trace element signatures indicate that the character of the Apollo 14 mantle source region is intrinsically different from that of other sites, which suggests that large-scale mantle heterogeneities exist. |
doi_str_mv | 10.1130/0091-7613(1990)018<0295:RTMSVR>2.3.CO;2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_201135068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786156</sourcerecordid><originalsourceid>FETCH-LOGICAL-a303t-a885ca0809394d9d40a708bb870c0775ac55aea51b1aaf32a24ae9e8988258673</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOD_-Q_BGRbqdJM2aqAhj-AXKYM7dhtM0m5WumclU9u9tqejVuXnf57w8hAwY9BkTMADQLMmGTJwxreEcmLoGruXldPb8Mp_e8L7ojydXfIf0mE5FwoeK75LeX2ufHMT4DsBSmakemU8dFmW9pJs3R5-9r08j_fKVxbq0NDjrQ0HzLS19TVelDX4dfO4o1lhtYxmpX9DR2leVpyylywpjpHkDjEdkb4FVdMe_95C83t3Oxg_J0-T-cTx6SlCA2CSolLQICrTQaaGLFDADlecqAwtZJtFKiQ4lyxniQnDkKTrtlFaKSzXMxCE56bjNro9PFzfm3X-GZl00HBpdEoaqCd13oWZ_jMEtzDqUKwxbw8C0Tk1rx7R2TOvUNE5N69R0Tg03wownhjeki460dD7a0tXWfftQFf9fu74QWarFD2N_e1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201135068</pqid></control><display><type>article</type><title>Reading the Moon's volcanic record by ion microprobe analysis of Apollo 14 glass beads</title><source>GeoScienceWorld</source><creator>Papike, J. J ; Shearer, C. K ; Galbreath, Kevin C</creator><creatorcontrib>Papike, J. J ; Shearer, C. K ; Galbreath, Kevin C</creatorcontrib><description>The application of secondary ion mass spectrometry to lunar volcanic problems is demonstrated by individually analyzing representative glass from the seven Apollo 14 pyroclastic glass bead groups (black, orange, yellow, LAP, green A, VLT, and green B) for selected trace elements (e.g., rare earth elements [REE], Ba, Sr, Zr, V, and Co). The trace element characteristics of glass beads are useful for differentiating impact from volcanic glass beads and identifying other volcanic glass types (e.g., LAP). Trace element modeling indicates that the bead groups are unrelated by low-pressure fractional crystallization to each other, to Apollo 14 crystalline basalts, or to basalts from other landing sites. A possible exception is the relation between LAP and Apollo 14 aluminous basalts. The absence of evolved basalts derived from primary magmas with volcanic glass compositions suggests either that these evolved basalts have not been sampled or that fire fountaining tapped mantle sources subtly different from crystalline mare-basalt source regions. Hybridization of mantle source regions is preferred to assimilation-fractional crystallization processes to explain the incorporation of the evolved potassium-REE-phosphorus (KREEP) component identified in these primitive magmas. Apollo 14 volcanic glass and mare basalt trace element signatures indicate that the character of the Apollo 14 mantle source region is intrinsically different from that of other sites, which suggests that large-scale mantle heterogeneities exist.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/0091-7613(1990)018<0295:RTMSVR>2.3.CO;2</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>Apollo 14 ; Apollo Program ; Astronomy ; Atoms & subatomic particles ; Chemistry ; Extraterrestrial geology ; geochemistry ; glasses ; hybridization ; igneous rocks ; ion probe data ; KREEP ; lunar mantle ; lunar samples ; magmas ; mass spectra ; metals ; Moon ; rare earths ; rock, sediment, soil ; spectra ; trace elements ; volcanic rocks ; volcanism ; Volcanoes</subject><ispartof>Geology (Boulder), 1990-04, Vol.18 (4), p.295-298</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute.</rights><rights>Copyright Geological Society of America Apr 1990</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/0091-7613(1990)018<0295:RTMSVR>2.3.CO;2$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,38881,77824</link.rule.ids></links><search><creatorcontrib>Papike, J. J</creatorcontrib><creatorcontrib>Shearer, C. K</creatorcontrib><creatorcontrib>Galbreath, Kevin C</creatorcontrib><title>Reading the Moon's volcanic record by ion microprobe analysis of Apollo 14 glass beads</title><title>Geology (Boulder)</title><description>The application of secondary ion mass spectrometry to lunar volcanic problems is demonstrated by individually analyzing representative glass from the seven Apollo 14 pyroclastic glass bead groups (black, orange, yellow, LAP, green A, VLT, and green B) for selected trace elements (e.g., rare earth elements [REE], Ba, Sr, Zr, V, and Co). The trace element characteristics of glass beads are useful for differentiating impact from volcanic glass beads and identifying other volcanic glass types (e.g., LAP). Trace element modeling indicates that the bead groups are unrelated by low-pressure fractional crystallization to each other, to Apollo 14 crystalline basalts, or to basalts from other landing sites. A possible exception is the relation between LAP and Apollo 14 aluminous basalts. The absence of evolved basalts derived from primary magmas with volcanic glass compositions suggests either that these evolved basalts have not been sampled or that fire fountaining tapped mantle sources subtly different from crystalline mare-basalt source regions. Hybridization of mantle source regions is preferred to assimilation-fractional crystallization processes to explain the incorporation of the evolved potassium-REE-phosphorus (KREEP) component identified in these primitive magmas. Apollo 14 volcanic glass and mare basalt trace element signatures indicate that the character of the Apollo 14 mantle source region is intrinsically different from that of other sites, which suggests that large-scale mantle heterogeneities exist.</description><subject>Apollo 14</subject><subject>Apollo Program</subject><subject>Astronomy</subject><subject>Atoms & subatomic particles</subject><subject>Chemistry</subject><subject>Extraterrestrial geology</subject><subject>geochemistry</subject><subject>glasses</subject><subject>hybridization</subject><subject>igneous rocks</subject><subject>ion probe data</subject><subject>KREEP</subject><subject>lunar mantle</subject><subject>lunar samples</subject><subject>magmas</subject><subject>mass spectra</subject><subject>metals</subject><subject>Moon</subject><subject>rare earths</subject><subject>rock, sediment, soil</subject><subject>spectra</subject><subject>trace elements</subject><subject>volcanic rocks</subject><subject>volcanism</subject><subject>Volcanoes</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNpFkF1LwzAUhoMoOD_-Q_BGRbqdJM2aqAhj-AXKYM7dhtM0m5WumclU9u9tqejVuXnf57w8hAwY9BkTMADQLMmGTJwxreEcmLoGruXldPb8Mp_e8L7ojydXfIf0mE5FwoeK75LeX2ufHMT4DsBSmakemU8dFmW9pJs3R5-9r08j_fKVxbq0NDjrQ0HzLS19TVelDX4dfO4o1lhtYxmpX9DR2leVpyylywpjpHkDjEdkb4FVdMe_95C83t3Oxg_J0-T-cTx6SlCA2CSolLQICrTQaaGLFDADlecqAwtZJtFKiQ4lyxniQnDkKTrtlFaKSzXMxCE56bjNro9PFzfm3X-GZl00HBpdEoaqCd13oWZ_jMEtzDqUKwxbw8C0Tk1rx7R2TOvUNE5N69R0Tg03wownhjeki460dD7a0tXWfftQFf9fu74QWarFD2N_e1M</recordid><startdate>19900401</startdate><enddate>19900401</enddate><creator>Papike, J. J</creator><creator>Shearer, C. K</creator><creator>Galbreath, Kevin C</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>19900401</creationdate><title>Reading the Moon's volcanic record by ion microprobe analysis of Apollo 14 glass beads</title><author>Papike, J. J ; Shearer, C. K ; Galbreath, Kevin C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a303t-a885ca0809394d9d40a708bb870c0775ac55aea51b1aaf32a24ae9e8988258673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Apollo 14</topic><topic>Apollo Program</topic><topic>Astronomy</topic><topic>Atoms & subatomic particles</topic><topic>Chemistry</topic><topic>Extraterrestrial geology</topic><topic>geochemistry</topic><topic>glasses</topic><topic>hybridization</topic><topic>igneous rocks</topic><topic>ion probe data</topic><topic>KREEP</topic><topic>lunar mantle</topic><topic>lunar samples</topic><topic>magmas</topic><topic>mass spectra</topic><topic>metals</topic><topic>Moon</topic><topic>rare earths</topic><topic>rock, sediment, soil</topic><topic>spectra</topic><topic>trace elements</topic><topic>volcanic rocks</topic><topic>volcanism</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papike, J. J</creatorcontrib><creatorcontrib>Shearer, C. K</creatorcontrib><creatorcontrib>Galbreath, Kevin C</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papike, J. J</au><au>Shearer, C. K</au><au>Galbreath, Kevin C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reading the Moon's volcanic record by ion microprobe analysis of Apollo 14 glass beads</atitle><jtitle>Geology (Boulder)</jtitle><date>1990-04-01</date><risdate>1990</risdate><volume>18</volume><issue>4</issue><spage>295</spage><epage>298</epage><pages>295-298</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>The application of secondary ion mass spectrometry to lunar volcanic problems is demonstrated by individually analyzing representative glass from the seven Apollo 14 pyroclastic glass bead groups (black, orange, yellow, LAP, green A, VLT, and green B) for selected trace elements (e.g., rare earth elements [REE], Ba, Sr, Zr, V, and Co). The trace element characteristics of glass beads are useful for differentiating impact from volcanic glass beads and identifying other volcanic glass types (e.g., LAP). Trace element modeling indicates that the bead groups are unrelated by low-pressure fractional crystallization to each other, to Apollo 14 crystalline basalts, or to basalts from other landing sites. A possible exception is the relation between LAP and Apollo 14 aluminous basalts. The absence of evolved basalts derived from primary magmas with volcanic glass compositions suggests either that these evolved basalts have not been sampled or that fire fountaining tapped mantle sources subtly different from crystalline mare-basalt source regions. Hybridization of mantle source regions is preferred to assimilation-fractional crystallization processes to explain the incorporation of the evolved potassium-REE-phosphorus (KREEP) component identified in these primitive magmas. Apollo 14 volcanic glass and mare basalt trace element signatures indicate that the character of the Apollo 14 mantle source region is intrinsically different from that of other sites, which suggests that large-scale mantle heterogeneities exist.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/0091-7613(1990)018<0295:RTMSVR>2.3.CO;2</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-7613 |
ispartof | Geology (Boulder), 1990-04, Vol.18 (4), p.295-298 |
issn | 0091-7613 1943-2682 |
language | eng |
recordid | cdi_proquest_journals_201135068 |
source | GeoScienceWorld |
subjects | Apollo 14 Apollo Program Astronomy Atoms & subatomic particles Chemistry Extraterrestrial geology geochemistry glasses hybridization igneous rocks ion probe data KREEP lunar mantle lunar samples magmas mass spectra metals Moon rare earths rock, sediment, soil spectra trace elements volcanic rocks volcanism Volcanoes |
title | Reading the Moon's volcanic record by ion microprobe analysis of Apollo 14 glass beads |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reading%20the%20Moon's%20volcanic%20record%20by%20ion%20microprobe%20analysis%20of%20Apollo%2014%20glass%20beads&rft.jtitle=Geology%20(Boulder)&rft.au=Papike,%20J.%20J&rft.date=1990-04-01&rft.volume=18&rft.issue=4&rft.spage=295&rft.epage=298&rft.pages=295-298&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/0091-7613(1990)018%3C0295:RTMSVR%3E2.3.CO;2&rft_dat=%3Cproquest_cross%3E2786156%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a303t-a885ca0809394d9d40a708bb870c0775ac55aea51b1aaf32a24ae9e8988258673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201135068&rft_id=info:pmid/&rfr_iscdi=true |