Loading…

Reading the Moon's volcanic record by ion microprobe analysis of Apollo 14 glass beads

The application of secondary ion mass spectrometry to lunar volcanic problems is demonstrated by individually analyzing representative glass from the seven Apollo 14 pyroclastic glass bead groups (black, orange, yellow, LAP, green A, VLT, and green B) for selected trace elements (e.g., rare earth el...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 1990-04, Vol.18 (4), p.295-298
Main Authors: Papike, J. J, Shearer, C. K, Galbreath, Kevin C
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 298
container_issue 4
container_start_page 295
container_title Geology (Boulder)
container_volume 18
creator Papike, J. J
Shearer, C. K
Galbreath, Kevin C
description The application of secondary ion mass spectrometry to lunar volcanic problems is demonstrated by individually analyzing representative glass from the seven Apollo 14 pyroclastic glass bead groups (black, orange, yellow, LAP, green A, VLT, and green B) for selected trace elements (e.g., rare earth elements [REE], Ba, Sr, Zr, V, and Co). The trace element characteristics of glass beads are useful for differentiating impact from volcanic glass beads and identifying other volcanic glass types (e.g., LAP). Trace element modeling indicates that the bead groups are unrelated by low-pressure fractional crystallization to each other, to Apollo 14 crystalline basalts, or to basalts from other landing sites. A possible exception is the relation between LAP and Apollo 14 aluminous basalts. The absence of evolved basalts derived from primary magmas with volcanic glass compositions suggests either that these evolved basalts have not been sampled or that fire fountaining tapped mantle sources subtly different from crystalline mare-basalt source regions. Hybridization of mantle source regions is preferred to assimilation-fractional crystallization processes to explain the incorporation of the evolved potassium-REE-phosphorus (KREEP) component identified in these primitive magmas. Apollo 14 volcanic glass and mare basalt trace element signatures indicate that the character of the Apollo 14 mantle source region is intrinsically different from that of other sites, which suggests that large-scale mantle heterogeneities exist.
doi_str_mv 10.1130/0091-7613(1990)018<0295:RTMSVR>2.3.CO;2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_201135068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786156</sourcerecordid><originalsourceid>FETCH-LOGICAL-a303t-a885ca0809394d9d40a708bb870c0775ac55aea51b1aaf32a24ae9e8988258673</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOD_-Q_BGRbqdJM2aqAhj-AXKYM7dhtM0m5WumclU9u9tqejVuXnf57w8hAwY9BkTMADQLMmGTJwxreEcmLoGruXldPb8Mp_e8L7ojydXfIf0mE5FwoeK75LeX2ufHMT4DsBSmakemU8dFmW9pJs3R5-9r08j_fKVxbq0NDjrQ0HzLS19TVelDX4dfO4o1lhtYxmpX9DR2leVpyylywpjpHkDjEdkb4FVdMe_95C83t3Oxg_J0-T-cTx6SlCA2CSolLQICrTQaaGLFDADlecqAwtZJtFKiQ4lyxniQnDkKTrtlFaKSzXMxCE56bjNro9PFzfm3X-GZl00HBpdEoaqCd13oWZ_jMEtzDqUKwxbw8C0Tk1rx7R2TOvUNE5N69R0Tg03wownhjeki460dD7a0tXWfftQFf9fu74QWarFD2N_e1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201135068</pqid></control><display><type>article</type><title>Reading the Moon's volcanic record by ion microprobe analysis of Apollo 14 glass beads</title><source>GeoScienceWorld</source><creator>Papike, J. J ; Shearer, C. K ; Galbreath, Kevin C</creator><creatorcontrib>Papike, J. J ; Shearer, C. K ; Galbreath, Kevin C</creatorcontrib><description>The application of secondary ion mass spectrometry to lunar volcanic problems is demonstrated by individually analyzing representative glass from the seven Apollo 14 pyroclastic glass bead groups (black, orange, yellow, LAP, green A, VLT, and green B) for selected trace elements (e.g., rare earth elements [REE], Ba, Sr, Zr, V, and Co). The trace element characteristics of glass beads are useful for differentiating impact from volcanic glass beads and identifying other volcanic glass types (e.g., LAP). Trace element modeling indicates that the bead groups are unrelated by low-pressure fractional crystallization to each other, to Apollo 14 crystalline basalts, or to basalts from other landing sites. A possible exception is the relation between LAP and Apollo 14 aluminous basalts. The absence of evolved basalts derived from primary magmas with volcanic glass compositions suggests either that these evolved basalts have not been sampled or that fire fountaining tapped mantle sources subtly different from crystalline mare-basalt source regions. Hybridization of mantle source regions is preferred to assimilation-fractional crystallization processes to explain the incorporation of the evolved potassium-REE-phosphorus (KREEP) component identified in these primitive magmas. Apollo 14 volcanic glass and mare basalt trace element signatures indicate that the character of the Apollo 14 mantle source region is intrinsically different from that of other sites, which suggests that large-scale mantle heterogeneities exist.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/0091-7613(1990)018&lt;0295:RTMSVR&gt;2.3.CO;2</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>Apollo 14 ; Apollo Program ; Astronomy ; Atoms &amp; subatomic particles ; Chemistry ; Extraterrestrial geology ; geochemistry ; glasses ; hybridization ; igneous rocks ; ion probe data ; KREEP ; lunar mantle ; lunar samples ; magmas ; mass spectra ; metals ; Moon ; rare earths ; rock, sediment, soil ; spectra ; trace elements ; volcanic rocks ; volcanism ; Volcanoes</subject><ispartof>Geology (Boulder), 1990-04, Vol.18 (4), p.295-298</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute.</rights><rights>Copyright Geological Society of America Apr 1990</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/0091-7613(1990)018&lt;0295:RTMSVR&gt;2.3.CO;2$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,38881,77824</link.rule.ids></links><search><creatorcontrib>Papike, J. J</creatorcontrib><creatorcontrib>Shearer, C. K</creatorcontrib><creatorcontrib>Galbreath, Kevin C</creatorcontrib><title>Reading the Moon's volcanic record by ion microprobe analysis of Apollo 14 glass beads</title><title>Geology (Boulder)</title><description>The application of secondary ion mass spectrometry to lunar volcanic problems is demonstrated by individually analyzing representative glass from the seven Apollo 14 pyroclastic glass bead groups (black, orange, yellow, LAP, green A, VLT, and green B) for selected trace elements (e.g., rare earth elements [REE], Ba, Sr, Zr, V, and Co). The trace element characteristics of glass beads are useful for differentiating impact from volcanic glass beads and identifying other volcanic glass types (e.g., LAP). Trace element modeling indicates that the bead groups are unrelated by low-pressure fractional crystallization to each other, to Apollo 14 crystalline basalts, or to basalts from other landing sites. A possible exception is the relation between LAP and Apollo 14 aluminous basalts. The absence of evolved basalts derived from primary magmas with volcanic glass compositions suggests either that these evolved basalts have not been sampled or that fire fountaining tapped mantle sources subtly different from crystalline mare-basalt source regions. Hybridization of mantle source regions is preferred to assimilation-fractional crystallization processes to explain the incorporation of the evolved potassium-REE-phosphorus (KREEP) component identified in these primitive magmas. Apollo 14 volcanic glass and mare basalt trace element signatures indicate that the character of the Apollo 14 mantle source region is intrinsically different from that of other sites, which suggests that large-scale mantle heterogeneities exist.</description><subject>Apollo 14</subject><subject>Apollo Program</subject><subject>Astronomy</subject><subject>Atoms &amp; subatomic particles</subject><subject>Chemistry</subject><subject>Extraterrestrial geology</subject><subject>geochemistry</subject><subject>glasses</subject><subject>hybridization</subject><subject>igneous rocks</subject><subject>ion probe data</subject><subject>KREEP</subject><subject>lunar mantle</subject><subject>lunar samples</subject><subject>magmas</subject><subject>mass spectra</subject><subject>metals</subject><subject>Moon</subject><subject>rare earths</subject><subject>rock, sediment, soil</subject><subject>spectra</subject><subject>trace elements</subject><subject>volcanic rocks</subject><subject>volcanism</subject><subject>Volcanoes</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNpFkF1LwzAUhoMoOD_-Q_BGRbqdJM2aqAhj-AXKYM7dhtM0m5WumclU9u9tqejVuXnf57w8hAwY9BkTMADQLMmGTJwxreEcmLoGruXldPb8Mp_e8L7ojydXfIf0mE5FwoeK75LeX2ufHMT4DsBSmakemU8dFmW9pJs3R5-9r08j_fKVxbq0NDjrQ0HzLS19TVelDX4dfO4o1lhtYxmpX9DR2leVpyylywpjpHkDjEdkb4FVdMe_95C83t3Oxg_J0-T-cTx6SlCA2CSolLQICrTQaaGLFDADlecqAwtZJtFKiQ4lyxniQnDkKTrtlFaKSzXMxCE56bjNro9PFzfm3X-GZl00HBpdEoaqCd13oWZ_jMEtzDqUKwxbw8C0Tk1rx7R2TOvUNE5N69R0Tg03wownhjeki460dD7a0tXWfftQFf9fu74QWarFD2N_e1M</recordid><startdate>19900401</startdate><enddate>19900401</enddate><creator>Papike, J. J</creator><creator>Shearer, C. K</creator><creator>Galbreath, Kevin C</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>19900401</creationdate><title>Reading the Moon's volcanic record by ion microprobe analysis of Apollo 14 glass beads</title><author>Papike, J. J ; Shearer, C. K ; Galbreath, Kevin C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a303t-a885ca0809394d9d40a708bb870c0775ac55aea51b1aaf32a24ae9e8988258673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Apollo 14</topic><topic>Apollo Program</topic><topic>Astronomy</topic><topic>Atoms &amp; subatomic particles</topic><topic>Chemistry</topic><topic>Extraterrestrial geology</topic><topic>geochemistry</topic><topic>glasses</topic><topic>hybridization</topic><topic>igneous rocks</topic><topic>ion probe data</topic><topic>KREEP</topic><topic>lunar mantle</topic><topic>lunar samples</topic><topic>magmas</topic><topic>mass spectra</topic><topic>metals</topic><topic>Moon</topic><topic>rare earths</topic><topic>rock, sediment, soil</topic><topic>spectra</topic><topic>trace elements</topic><topic>volcanic rocks</topic><topic>volcanism</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papike, J. J</creatorcontrib><creatorcontrib>Shearer, C. K</creatorcontrib><creatorcontrib>Galbreath, Kevin C</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papike, J. J</au><au>Shearer, C. K</au><au>Galbreath, Kevin C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reading the Moon's volcanic record by ion microprobe analysis of Apollo 14 glass beads</atitle><jtitle>Geology (Boulder)</jtitle><date>1990-04-01</date><risdate>1990</risdate><volume>18</volume><issue>4</issue><spage>295</spage><epage>298</epage><pages>295-298</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>The application of secondary ion mass spectrometry to lunar volcanic problems is demonstrated by individually analyzing representative glass from the seven Apollo 14 pyroclastic glass bead groups (black, orange, yellow, LAP, green A, VLT, and green B) for selected trace elements (e.g., rare earth elements [REE], Ba, Sr, Zr, V, and Co). The trace element characteristics of glass beads are useful for differentiating impact from volcanic glass beads and identifying other volcanic glass types (e.g., LAP). Trace element modeling indicates that the bead groups are unrelated by low-pressure fractional crystallization to each other, to Apollo 14 crystalline basalts, or to basalts from other landing sites. A possible exception is the relation between LAP and Apollo 14 aluminous basalts. The absence of evolved basalts derived from primary magmas with volcanic glass compositions suggests either that these evolved basalts have not been sampled or that fire fountaining tapped mantle sources subtly different from crystalline mare-basalt source regions. Hybridization of mantle source regions is preferred to assimilation-fractional crystallization processes to explain the incorporation of the evolved potassium-REE-phosphorus (KREEP) component identified in these primitive magmas. Apollo 14 volcanic glass and mare basalt trace element signatures indicate that the character of the Apollo 14 mantle source region is intrinsically different from that of other sites, which suggests that large-scale mantle heterogeneities exist.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/0091-7613(1990)018&lt;0295:RTMSVR&gt;2.3.CO;2</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0091-7613
ispartof Geology (Boulder), 1990-04, Vol.18 (4), p.295-298
issn 0091-7613
1943-2682
language eng
recordid cdi_proquest_journals_201135068
source GeoScienceWorld
subjects Apollo 14
Apollo Program
Astronomy
Atoms & subatomic particles
Chemistry
Extraterrestrial geology
geochemistry
glasses
hybridization
igneous rocks
ion probe data
KREEP
lunar mantle
lunar samples
magmas
mass spectra
metals
Moon
rare earths
rock, sediment, soil
spectra
trace elements
volcanic rocks
volcanism
Volcanoes
title Reading the Moon's volcanic record by ion microprobe analysis of Apollo 14 glass beads
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reading%20the%20Moon's%20volcanic%20record%20by%20ion%20microprobe%20analysis%20of%20Apollo%2014%20glass%20beads&rft.jtitle=Geology%20(Boulder)&rft.au=Papike,%20J.%20J&rft.date=1990-04-01&rft.volume=18&rft.issue=4&rft.spage=295&rft.epage=298&rft.pages=295-298&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/0091-7613(1990)018%3C0295:RTMSVR%3E2.3.CO;2&rft_dat=%3Cproquest_cross%3E2786156%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a303t-a885ca0809394d9d40a708bb870c0775ac55aea51b1aaf32a24ae9e8988258673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201135068&rft_id=info:pmid/&rfr_iscdi=true