Loading…
Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures
We used optical experiments and high-speed photography to interpret the origins of tensile fractures that form during dynamic shear rupture in laboratory experiments. Sub-Rayleigh (slower than the Rayleigh wave speed, cR) shear ruptures in Homalite-100 produce damage zones consisting of an array of...
Saved in:
Published in: | Geology (Boulder) 2009-09, Vol.37 (9), p.795-798 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a315t-902e9d17146d381e51e26e6438d64fe970d3172ce0fe94db13f94089b5c94cf83 |
---|---|
cites | cdi_FETCH-LOGICAL-a315t-902e9d17146d381e51e26e6438d64fe970d3172ce0fe94db13f94089b5c94cf83 |
container_end_page | 798 |
container_issue | 9 |
container_start_page | 795 |
container_title | Geology (Boulder) |
container_volume | 37 |
creator | Griffith, W. Ashley Rosakis, Ares Pollard, David D Ko, Chi Wan |
description | We used optical experiments and high-speed photography to interpret the origins of tensile fractures that form during dynamic shear rupture in laboratory experiments. Sub-Rayleigh (slower than the Rayleigh wave speed, cR) shear ruptures in Homalite-100 produce damage zones consisting of an array of tensile cracks. These cracks nucleate and grow within cohesive zones behind the tips of shear ruptures that propagate dynamically along interfaces with frictional and cohesive strength, simulating a "strong" fault. The tensile cracks are produced only along one side of the interface where transient, fault-parallel, tensile stress perturbations are associated with the growing shear rupture tip. Results of this study represent an important potential bridge between geological observations of structures preserved along exhumed faults and theoretical models of earthquake propagation, potentially leading to diagnostic criteria for interpreting velocity, directivity, and static prestress states associated with past earthquakes on exhumed faults. |
doi_str_mv | 10.1130/G30064A.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_201163968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852525401</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-902e9d17146d381e51e26e6438d64fe970d3172ce0fe94db13f94089b5c94cf83</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmNw4B9E3BDqiJs0bY4THwNpEhc4R1nijm5d2yUpsH9Ppw2Jk23p0Wv7IeQa2ASAs_sZZ0yK6QROyAiU4Ekqi_SUjBhTkOQS-Dm5CGHFGIgsL0akfNw1ZlNZ6vsu9h4p_nToqw02MVCse1s5E5FGbEJVI7Xe2DV1-IV12-0h6npfNUva-bYzSxP3PRofP7e9WeNfargkZ6WpA14d65h8PD-9P7wk87fZ68N0nhgOWUwUS1E5yEFIxwvADDCVKAUvnBQlqpw5DnlqkQ2DcAvgpRKsUIvMKmHLgo_JzSF3uGfbY4h61fa-GVbqlAFIruQeuj1A1rcheCx1N3xs_E4D03uL-mhRw8DeHdgltsFW2Fj8bn3t_ucypVlRZIPtX32YdP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201163968</pqid></control><display><type>article</type><title>Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures</title><source>GeoScienceWorld (GSW)</source><creator>Griffith, W. Ashley ; Rosakis, Ares ; Pollard, David D ; Ko, Chi Wan</creator><creatorcontrib>Griffith, W. Ashley ; Rosakis, Ares ; Pollard, David D ; Ko, Chi Wan</creatorcontrib><description>We used optical experiments and high-speed photography to interpret the origins of tensile fractures that form during dynamic shear rupture in laboratory experiments. Sub-Rayleigh (slower than the Rayleigh wave speed, cR) shear ruptures in Homalite-100 produce damage zones consisting of an array of tensile cracks. These cracks nucleate and grow within cohesive zones behind the tips of shear ruptures that propagate dynamically along interfaces with frictional and cohesive strength, simulating a "strong" fault. The tensile cracks are produced only along one side of the interface where transient, fault-parallel, tensile stress perturbations are associated with the growing shear rupture tip. Results of this study represent an important potential bridge between geological observations of structures preserved along exhumed faults and theoretical models of earthquake propagation, potentially leading to diagnostic criteria for interpreting velocity, directivity, and static prestress states associated with past earthquakes on exhumed faults.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G30064A.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>cracks ; dynamics ; earthquake prediction ; Earthquakes ; Engineering geology ; experimental studies ; focus ; fractures ; Geology ; laboratory studies ; propagation ; rock mechanics ; rupture ; Seismology ; shear ; Shear strength ; Tensile strength ; tension</subject><ispartof>Geology (Boulder), 2009-09, Vol.37 (9), p.795-798</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Sep 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-902e9d17146d381e51e26e6438d64fe970d3172ce0fe94db13f94089b5c94cf83</citedby><cites>FETCH-LOGICAL-a315t-902e9d17146d381e51e26e6438d64fe970d3172ce0fe94db13f94089b5c94cf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G30064A.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,38862,77573</link.rule.ids></links><search><creatorcontrib>Griffith, W. Ashley</creatorcontrib><creatorcontrib>Rosakis, Ares</creatorcontrib><creatorcontrib>Pollard, David D</creatorcontrib><creatorcontrib>Ko, Chi Wan</creatorcontrib><title>Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures</title><title>Geology (Boulder)</title><description>We used optical experiments and high-speed photography to interpret the origins of tensile fractures that form during dynamic shear rupture in laboratory experiments. Sub-Rayleigh (slower than the Rayleigh wave speed, cR) shear ruptures in Homalite-100 produce damage zones consisting of an array of tensile cracks. These cracks nucleate and grow within cohesive zones behind the tips of shear ruptures that propagate dynamically along interfaces with frictional and cohesive strength, simulating a "strong" fault. The tensile cracks are produced only along one side of the interface where transient, fault-parallel, tensile stress perturbations are associated with the growing shear rupture tip. Results of this study represent an important potential bridge between geological observations of structures preserved along exhumed faults and theoretical models of earthquake propagation, potentially leading to diagnostic criteria for interpreting velocity, directivity, and static prestress states associated with past earthquakes on exhumed faults.</description><subject>cracks</subject><subject>dynamics</subject><subject>earthquake prediction</subject><subject>Earthquakes</subject><subject>Engineering geology</subject><subject>experimental studies</subject><subject>focus</subject><subject>fractures</subject><subject>Geology</subject><subject>laboratory studies</subject><subject>propagation</subject><subject>rock mechanics</subject><subject>rupture</subject><subject>Seismology</subject><subject>shear</subject><subject>Shear strength</subject><subject>Tensile strength</subject><subject>tension</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwzAMhiMEEmNw4B9E3BDqiJs0bY4THwNpEhc4R1nijm5d2yUpsH9Ppw2Jk23p0Wv7IeQa2ASAs_sZZ0yK6QROyAiU4Ekqi_SUjBhTkOQS-Dm5CGHFGIgsL0akfNw1ZlNZ6vsu9h4p_nToqw02MVCse1s5E5FGbEJVI7Xe2DV1-IV12-0h6npfNUva-bYzSxP3PRofP7e9WeNfargkZ6WpA14d65h8PD-9P7wk87fZ68N0nhgOWUwUS1E5yEFIxwvADDCVKAUvnBQlqpw5DnlqkQ2DcAvgpRKsUIvMKmHLgo_JzSF3uGfbY4h61fa-GVbqlAFIruQeuj1A1rcheCx1N3xs_E4D03uL-mhRw8DeHdgltsFW2Fj8bn3t_ucypVlRZIPtX32YdP8</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Griffith, W. Ashley</creator><creator>Rosakis, Ares</creator><creator>Pollard, David D</creator><creator>Ko, Chi Wan</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20090901</creationdate><title>Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures</title><author>Griffith, W. Ashley ; Rosakis, Ares ; Pollard, David D ; Ko, Chi Wan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-902e9d17146d381e51e26e6438d64fe970d3172ce0fe94db13f94089b5c94cf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>cracks</topic><topic>dynamics</topic><topic>earthquake prediction</topic><topic>Earthquakes</topic><topic>Engineering geology</topic><topic>experimental studies</topic><topic>focus</topic><topic>fractures</topic><topic>Geology</topic><topic>laboratory studies</topic><topic>propagation</topic><topic>rock mechanics</topic><topic>rupture</topic><topic>Seismology</topic><topic>shear</topic><topic>Shear strength</topic><topic>Tensile strength</topic><topic>tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griffith, W. Ashley</creatorcontrib><creatorcontrib>Rosakis, Ares</creatorcontrib><creatorcontrib>Pollard, David D</creatorcontrib><creatorcontrib>Ko, Chi Wan</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffith, W. Ashley</au><au>Rosakis, Ares</au><au>Pollard, David D</au><au>Ko, Chi Wan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures</atitle><jtitle>Geology (Boulder)</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>37</volume><issue>9</issue><spage>795</spage><epage>798</epage><pages>795-798</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>We used optical experiments and high-speed photography to interpret the origins of tensile fractures that form during dynamic shear rupture in laboratory experiments. Sub-Rayleigh (slower than the Rayleigh wave speed, cR) shear ruptures in Homalite-100 produce damage zones consisting of an array of tensile cracks. These cracks nucleate and grow within cohesive zones behind the tips of shear ruptures that propagate dynamically along interfaces with frictional and cohesive strength, simulating a "strong" fault. The tensile cracks are produced only along one side of the interface where transient, fault-parallel, tensile stress perturbations are associated with the growing shear rupture tip. Results of this study represent an important potential bridge between geological observations of structures preserved along exhumed faults and theoretical models of earthquake propagation, potentially leading to diagnostic criteria for interpreting velocity, directivity, and static prestress states associated with past earthquakes on exhumed faults.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G30064A.1</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-7613 |
ispartof | Geology (Boulder), 2009-09, Vol.37 (9), p.795-798 |
issn | 0091-7613 1943-2682 |
language | eng |
recordid | cdi_proquest_journals_201163968 |
source | GeoScienceWorld (GSW) |
subjects | cracks dynamics earthquake prediction Earthquakes Engineering geology experimental studies focus fractures Geology laboratory studies propagation rock mechanics rupture Seismology shear Shear strength Tensile strength tension |
title | Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20rupture%20experiments%20elucidate%20tensile%20crack%20development%20during%20propagating%20earthquake%20ruptures&rft.jtitle=Geology%20(Boulder)&rft.au=Griffith,%20W.%20Ashley&rft.date=2009-09-01&rft.volume=37&rft.issue=9&rft.spage=795&rft.epage=798&rft.pages=795-798&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G30064A.1&rft_dat=%3Cproquest_cross%3E1852525401%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-902e9d17146d381e51e26e6438d64fe970d3172ce0fe94db13f94089b5c94cf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201163968&rft_id=info:pmid/&rfr_iscdi=true |