Loading…

Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures

We used optical experiments and high-speed photography to interpret the origins of tensile fractures that form during dynamic shear rupture in laboratory experiments. Sub-Rayleigh (slower than the Rayleigh wave speed, cR) shear ruptures in Homalite-100 produce damage zones consisting of an array of...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2009-09, Vol.37 (9), p.795-798
Main Authors: Griffith, W. Ashley, Rosakis, Ares, Pollard, David D, Ko, Chi Wan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a315t-902e9d17146d381e51e26e6438d64fe970d3172ce0fe94db13f94089b5c94cf83
cites cdi_FETCH-LOGICAL-a315t-902e9d17146d381e51e26e6438d64fe970d3172ce0fe94db13f94089b5c94cf83
container_end_page 798
container_issue 9
container_start_page 795
container_title Geology (Boulder)
container_volume 37
creator Griffith, W. Ashley
Rosakis, Ares
Pollard, David D
Ko, Chi Wan
description We used optical experiments and high-speed photography to interpret the origins of tensile fractures that form during dynamic shear rupture in laboratory experiments. Sub-Rayleigh (slower than the Rayleigh wave speed, cR) shear ruptures in Homalite-100 produce damage zones consisting of an array of tensile cracks. These cracks nucleate and grow within cohesive zones behind the tips of shear ruptures that propagate dynamically along interfaces with frictional and cohesive strength, simulating a "strong" fault. The tensile cracks are produced only along one side of the interface where transient, fault-parallel, tensile stress perturbations are associated with the growing shear rupture tip. Results of this study represent an important potential bridge between geological observations of structures preserved along exhumed faults and theoretical models of earthquake propagation, potentially leading to diagnostic criteria for interpreting velocity, directivity, and static prestress states associated with past earthquakes on exhumed faults.
doi_str_mv 10.1130/G30064A.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_201163968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852525401</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-902e9d17146d381e51e26e6438d64fe970d3172ce0fe94db13f94089b5c94cf83</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmNw4B9E3BDqiJs0bY4THwNpEhc4R1nijm5d2yUpsH9Ppw2Jk23p0Wv7IeQa2ASAs_sZZ0yK6QROyAiU4Ekqi_SUjBhTkOQS-Dm5CGHFGIgsL0akfNw1ZlNZ6vsu9h4p_nToqw02MVCse1s5E5FGbEJVI7Xe2DV1-IV12-0h6npfNUva-bYzSxP3PRofP7e9WeNfargkZ6WpA14d65h8PD-9P7wk87fZ68N0nhgOWUwUS1E5yEFIxwvADDCVKAUvnBQlqpw5DnlqkQ2DcAvgpRKsUIvMKmHLgo_JzSF3uGfbY4h61fa-GVbqlAFIruQeuj1A1rcheCx1N3xs_E4D03uL-mhRw8DeHdgltsFW2Fj8bn3t_ucypVlRZIPtX32YdP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201163968</pqid></control><display><type>article</type><title>Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures</title><source>GeoScienceWorld (GSW)</source><creator>Griffith, W. Ashley ; Rosakis, Ares ; Pollard, David D ; Ko, Chi Wan</creator><creatorcontrib>Griffith, W. Ashley ; Rosakis, Ares ; Pollard, David D ; Ko, Chi Wan</creatorcontrib><description>We used optical experiments and high-speed photography to interpret the origins of tensile fractures that form during dynamic shear rupture in laboratory experiments. Sub-Rayleigh (slower than the Rayleigh wave speed, cR) shear ruptures in Homalite-100 produce damage zones consisting of an array of tensile cracks. These cracks nucleate and grow within cohesive zones behind the tips of shear ruptures that propagate dynamically along interfaces with frictional and cohesive strength, simulating a "strong" fault. The tensile cracks are produced only along one side of the interface where transient, fault-parallel, tensile stress perturbations are associated with the growing shear rupture tip. Results of this study represent an important potential bridge between geological observations of structures preserved along exhumed faults and theoretical models of earthquake propagation, potentially leading to diagnostic criteria for interpreting velocity, directivity, and static prestress states associated with past earthquakes on exhumed faults.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G30064A.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>cracks ; dynamics ; earthquake prediction ; Earthquakes ; Engineering geology ; experimental studies ; focus ; fractures ; Geology ; laboratory studies ; propagation ; rock mechanics ; rupture ; Seismology ; shear ; Shear strength ; Tensile strength ; tension</subject><ispartof>Geology (Boulder), 2009-09, Vol.37 (9), p.795-798</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Sep 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-902e9d17146d381e51e26e6438d64fe970d3172ce0fe94db13f94089b5c94cf83</citedby><cites>FETCH-LOGICAL-a315t-902e9d17146d381e51e26e6438d64fe970d3172ce0fe94db13f94089b5c94cf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G30064A.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,38862,77573</link.rule.ids></links><search><creatorcontrib>Griffith, W. Ashley</creatorcontrib><creatorcontrib>Rosakis, Ares</creatorcontrib><creatorcontrib>Pollard, David D</creatorcontrib><creatorcontrib>Ko, Chi Wan</creatorcontrib><title>Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures</title><title>Geology (Boulder)</title><description>We used optical experiments and high-speed photography to interpret the origins of tensile fractures that form during dynamic shear rupture in laboratory experiments. Sub-Rayleigh (slower than the Rayleigh wave speed, cR) shear ruptures in Homalite-100 produce damage zones consisting of an array of tensile cracks. These cracks nucleate and grow within cohesive zones behind the tips of shear ruptures that propagate dynamically along interfaces with frictional and cohesive strength, simulating a "strong" fault. The tensile cracks are produced only along one side of the interface where transient, fault-parallel, tensile stress perturbations are associated with the growing shear rupture tip. Results of this study represent an important potential bridge between geological observations of structures preserved along exhumed faults and theoretical models of earthquake propagation, potentially leading to diagnostic criteria for interpreting velocity, directivity, and static prestress states associated with past earthquakes on exhumed faults.</description><subject>cracks</subject><subject>dynamics</subject><subject>earthquake prediction</subject><subject>Earthquakes</subject><subject>Engineering geology</subject><subject>experimental studies</subject><subject>focus</subject><subject>fractures</subject><subject>Geology</subject><subject>laboratory studies</subject><subject>propagation</subject><subject>rock mechanics</subject><subject>rupture</subject><subject>Seismology</subject><subject>shear</subject><subject>Shear strength</subject><subject>Tensile strength</subject><subject>tension</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwzAMhiMEEmNw4B9E3BDqiJs0bY4THwNpEhc4R1nijm5d2yUpsH9Ppw2Jk23p0Wv7IeQa2ASAs_sZZ0yK6QROyAiU4Ekqi_SUjBhTkOQS-Dm5CGHFGIgsL0akfNw1ZlNZ6vsu9h4p_nToqw02MVCse1s5E5FGbEJVI7Xe2DV1-IV12-0h6npfNUva-bYzSxP3PRofP7e9WeNfargkZ6WpA14d65h8PD-9P7wk87fZ68N0nhgOWUwUS1E5yEFIxwvADDCVKAUvnBQlqpw5DnlqkQ2DcAvgpRKsUIvMKmHLgo_JzSF3uGfbY4h61fa-GVbqlAFIruQeuj1A1rcheCx1N3xs_E4D03uL-mhRw8DeHdgltsFW2Fj8bn3t_ucypVlRZIPtX32YdP8</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Griffith, W. Ashley</creator><creator>Rosakis, Ares</creator><creator>Pollard, David D</creator><creator>Ko, Chi Wan</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20090901</creationdate><title>Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures</title><author>Griffith, W. Ashley ; Rosakis, Ares ; Pollard, David D ; Ko, Chi Wan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-902e9d17146d381e51e26e6438d64fe970d3172ce0fe94db13f94089b5c94cf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>cracks</topic><topic>dynamics</topic><topic>earthquake prediction</topic><topic>Earthquakes</topic><topic>Engineering geology</topic><topic>experimental studies</topic><topic>focus</topic><topic>fractures</topic><topic>Geology</topic><topic>laboratory studies</topic><topic>propagation</topic><topic>rock mechanics</topic><topic>rupture</topic><topic>Seismology</topic><topic>shear</topic><topic>Shear strength</topic><topic>Tensile strength</topic><topic>tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griffith, W. Ashley</creatorcontrib><creatorcontrib>Rosakis, Ares</creatorcontrib><creatorcontrib>Pollard, David D</creatorcontrib><creatorcontrib>Ko, Chi Wan</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffith, W. Ashley</au><au>Rosakis, Ares</au><au>Pollard, David D</au><au>Ko, Chi Wan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures</atitle><jtitle>Geology (Boulder)</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>37</volume><issue>9</issue><spage>795</spage><epage>798</epage><pages>795-798</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>We used optical experiments and high-speed photography to interpret the origins of tensile fractures that form during dynamic shear rupture in laboratory experiments. Sub-Rayleigh (slower than the Rayleigh wave speed, cR) shear ruptures in Homalite-100 produce damage zones consisting of an array of tensile cracks. These cracks nucleate and grow within cohesive zones behind the tips of shear ruptures that propagate dynamically along interfaces with frictional and cohesive strength, simulating a "strong" fault. The tensile cracks are produced only along one side of the interface where transient, fault-parallel, tensile stress perturbations are associated with the growing shear rupture tip. Results of this study represent an important potential bridge between geological observations of structures preserved along exhumed faults and theoretical models of earthquake propagation, potentially leading to diagnostic criteria for interpreting velocity, directivity, and static prestress states associated with past earthquakes on exhumed faults.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G30064A.1</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0091-7613
ispartof Geology (Boulder), 2009-09, Vol.37 (9), p.795-798
issn 0091-7613
1943-2682
language eng
recordid cdi_proquest_journals_201163968
source GeoScienceWorld (GSW)
subjects cracks
dynamics
earthquake prediction
Earthquakes
Engineering geology
experimental studies
focus
fractures
Geology
laboratory studies
propagation
rock mechanics
rupture
Seismology
shear
Shear strength
Tensile strength
tension
title Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20rupture%20experiments%20elucidate%20tensile%20crack%20development%20during%20propagating%20earthquake%20ruptures&rft.jtitle=Geology%20(Boulder)&rft.au=Griffith,%20W.%20Ashley&rft.date=2009-09-01&rft.volume=37&rft.issue=9&rft.spage=795&rft.epage=798&rft.pages=795-798&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G30064A.1&rft_dat=%3Cproquest_cross%3E1852525401%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-902e9d17146d381e51e26e6438d64fe970d3172ce0fe94db13f94089b5c94cf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201163968&rft_id=info:pmid/&rfr_iscdi=true