Loading…

RECA-DEPENDENT RECOVERY OF ARRESTED DNA REPLICATION FORKS

DNA damage encountered during the cellular process of chromosomal replication can disrupt the replication machinery and result in mutagenesis or lethality. The RecA protein of Escherichia coli is essential for survival in this situation: It maintains the integrity of the arrested replication fork an...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of genetics 2003-01, Vol.37 (1), p.611-646
Main Authors: Courcelle, Justin, Hanawalt, Philip C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:DNA damage encountered during the cellular process of chromosomal replication can disrupt the replication machinery and result in mutagenesis or lethality. The RecA protein of Escherichia coli is essential for survival in this situation: It maintains the integrity of the arrested replication fork and signals the upregulation of over 40 gene products, of which most are required to restore the genomic template and to facilitate the resumption of processive replication. Although RecA was originally discovered as a gene product that was required to change the genetic information during sexual cell cycles, over three decades of research have revealed that it is also the key enzyme required to maintain the genetic information when DNA damage is encountered during replication in asexual cell cycles. In this review, we examine the significant experimental approaches that have led to our current understanding of the RecA-mediated processes that restore replication following encounters with DNA damage.
ISSN:0066-4197
1545-2948
DOI:10.1146/annurev.genet.37.110801.142616