Loading…
Dual-stimulus magnetoelectric energy harvesting
Harvesting energy from otherwise wasted resources has been intensively investigated as a promising technology especially for enabling the deployment of autonomous wireless-sensor networks for the Internet of Things. Multi-stimulus energy harvesting, simultaneously from different energy sources, prov...
Saved in:
Published in: | MRS bulletin 2018-03, Vol.43 (3), p.199-205 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-68b55eee82e8f09c34655a9ae553243d3f63dcb70ad7a96cfb844f5d6854c4e83 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-68b55eee82e8f09c34655a9ae553243d3f63dcb70ad7a96cfb844f5d6854c4e83 |
container_end_page | 205 |
container_issue | 3 |
container_start_page | 199 |
container_title | MRS bulletin |
container_volume | 43 |
creator | Chu, Zhaoqiang Annapureddy, Venkateswarlu PourhosseiniAsl, MohammadJavad Palneedi, Haribabu Ryu, Jungho Dong, Shuxiang |
description | Harvesting energy from otherwise wasted resources has been intensively investigated as a promising technology especially for enabling the deployment of autonomous wireless-sensor networks for the Internet of Things. Multi-stimulus energy harvesting, simultaneously from different energy sources, provides an attractive opportunity to amplify the power density of harvesters, thereby extending their potential for self-powered devices. In this article, we review recent and ongoing research efforts aimed at enhancing the energy-harvesting performance of magnetoelectric (ME) composite harvesters employing dual stimuli, mechanical vibrations, and magnetic fields. After a brief introduction to vibration, magnetic field, and dual-mode energy harvesting, we survey the key materials utilized for ME energy harvesting. We then focus on progress in this area and discuss relevant ideas to realize electromechanical and magnetoelectric coupling for harvesting energy from mechanical vibrations and magnetic fields simultaneously. We provide perspectives and future directions as well. |
doi_str_mv | 10.1557/mrs.2018.31 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012067365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2018_31</cupid><sourcerecordid>2012067365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-68b55eee82e8f09c34655a9ae553243d3f63dcb70ad7a96cfb844f5d6854c4e83</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpTPyBSozg1I59jjOi8ilVYoHZcpxLSJWPYidI_fe4aiUWxHTLc--rO0KuOUs4QLbsfEhSxnUi-AmZ8VxoymUKp2TGtBY0U7k8JxchbBjjwDKYkeXDZFsaxqab2iksOlv3OA7Yoht94xbYo693i0_rvzGivr4kZ5VtA14d55x8PD2-r17o-u35dXW_pk6ydKRKFwCIqFPUFcudkArA5hYBRCpFKSolSldkzJaZzZWrCi1lBaXSIJ1ELebk5pC79cPXFLvNZph8HytNPDBlKhMKoro9KOeHEDxWZuubzvqd4czsP2LiR_YL2gge9d1Bh6j6Gv1v5t-cHsNtV_imrPF__wPiv3GP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012067365</pqid></control><display><type>article</type><title>Dual-stimulus magnetoelectric energy harvesting</title><source>Springer Nature</source><creator>Chu, Zhaoqiang ; Annapureddy, Venkateswarlu ; PourhosseiniAsl, MohammadJavad ; Palneedi, Haribabu ; Ryu, Jungho ; Dong, Shuxiang</creator><creatorcontrib>Chu, Zhaoqiang ; Annapureddy, Venkateswarlu ; PourhosseiniAsl, MohammadJavad ; Palneedi, Haribabu ; Ryu, Jungho ; Dong, Shuxiang</creatorcontrib><description>Harvesting energy from otherwise wasted resources has been intensively investigated as a promising technology especially for enabling the deployment of autonomous wireless-sensor networks for the Internet of Things. Multi-stimulus energy harvesting, simultaneously from different energy sources, provides an attractive opportunity to amplify the power density of harvesters, thereby extending their potential for self-powered devices. In this article, we review recent and ongoing research efforts aimed at enhancing the energy-harvesting performance of magnetoelectric (ME) composite harvesters employing dual stimuli, mechanical vibrations, and magnetic fields. After a brief introduction to vibration, magnetic field, and dual-mode energy harvesting, we survey the key materials utilized for ME energy harvesting. We then focus on progress in this area and discuss relevant ideas to realize electromechanical and magnetoelectric coupling for harvesting energy from mechanical vibrations and magnetic fields simultaneously. We provide perspectives and future directions as well.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2018.31</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Applied and Technical Physics ; Characterization and Evaluation of Materials ; Electric fields ; Energy harvesting ; Energy Materials ; Energy resources ; Engineering ; Flexibility ; Harvesters ; Internet of Things ; Magnetic fields ; Magnetism ; Materials Engineering ; Materials for Energy Harvesting ; Materials Science ; Nanotechnology ; Researchers ; Sensors ; Wireless sensor networks</subject><ispartof>MRS bulletin, 2018-03, Vol.43 (3), p.199-205</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-68b55eee82e8f09c34655a9ae553243d3f63dcb70ad7a96cfb844f5d6854c4e83</citedby><cites>FETCH-LOGICAL-c402t-68b55eee82e8f09c34655a9ae553243d3f63dcb70ad7a96cfb844f5d6854c4e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chu, Zhaoqiang</creatorcontrib><creatorcontrib>Annapureddy, Venkateswarlu</creatorcontrib><creatorcontrib>PourhosseiniAsl, MohammadJavad</creatorcontrib><creatorcontrib>Palneedi, Haribabu</creatorcontrib><creatorcontrib>Ryu, Jungho</creatorcontrib><creatorcontrib>Dong, Shuxiang</creatorcontrib><title>Dual-stimulus magnetoelectric energy harvesting</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Harvesting energy from otherwise wasted resources has been intensively investigated as a promising technology especially for enabling the deployment of autonomous wireless-sensor networks for the Internet of Things. Multi-stimulus energy harvesting, simultaneously from different energy sources, provides an attractive opportunity to amplify the power density of harvesters, thereby extending their potential for self-powered devices. In this article, we review recent and ongoing research efforts aimed at enhancing the energy-harvesting performance of magnetoelectric (ME) composite harvesters employing dual stimuli, mechanical vibrations, and magnetic fields. After a brief introduction to vibration, magnetic field, and dual-mode energy harvesting, we survey the key materials utilized for ME energy harvesting. We then focus on progress in this area and discuss relevant ideas to realize electromechanical and magnetoelectric coupling for harvesting energy from mechanical vibrations and magnetic fields simultaneously. We provide perspectives and future directions as well.</description><subject>Alloys</subject><subject>Applied and Technical Physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Electric fields</subject><subject>Energy harvesting</subject><subject>Energy Materials</subject><subject>Energy resources</subject><subject>Engineering</subject><subject>Flexibility</subject><subject>Harvesters</subject><subject>Internet of Things</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Materials Engineering</subject><subject>Materials for Energy Harvesting</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Researchers</subject><subject>Sensors</subject><subject>Wireless sensor networks</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQpTPyBSozg1I59jjOi8ilVYoHZcpxLSJWPYidI_fe4aiUWxHTLc--rO0KuOUs4QLbsfEhSxnUi-AmZ8VxoymUKp2TGtBY0U7k8JxchbBjjwDKYkeXDZFsaxqab2iksOlv3OA7Yoht94xbYo693i0_rvzGivr4kZ5VtA14d55x8PD2-r17o-u35dXW_pk6ydKRKFwCIqFPUFcudkArA5hYBRCpFKSolSldkzJaZzZWrCi1lBaXSIJ1ELebk5pC79cPXFLvNZph8HytNPDBlKhMKoro9KOeHEDxWZuubzvqd4czsP2LiR_YL2gge9d1Bh6j6Gv1v5t-cHsNtV_imrPF__wPiv3GP</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Chu, Zhaoqiang</creator><creator>Annapureddy, Venkateswarlu</creator><creator>PourhosseiniAsl, MohammadJavad</creator><creator>Palneedi, Haribabu</creator><creator>Ryu, Jungho</creator><creator>Dong, Shuxiang</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20180301</creationdate><title>Dual-stimulus magnetoelectric energy harvesting</title><author>Chu, Zhaoqiang ; Annapureddy, Venkateswarlu ; PourhosseiniAsl, MohammadJavad ; Palneedi, Haribabu ; Ryu, Jungho ; Dong, Shuxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-68b55eee82e8f09c34655a9ae553243d3f63dcb70ad7a96cfb844f5d6854c4e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloys</topic><topic>Applied and Technical Physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Electric fields</topic><topic>Energy harvesting</topic><topic>Energy Materials</topic><topic>Energy resources</topic><topic>Engineering</topic><topic>Flexibility</topic><topic>Harvesters</topic><topic>Internet of Things</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Materials Engineering</topic><topic>Materials for Energy Harvesting</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Researchers</topic><topic>Sensors</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Zhaoqiang</creatorcontrib><creatorcontrib>Annapureddy, Venkateswarlu</creatorcontrib><creatorcontrib>PourhosseiniAsl, MohammadJavad</creatorcontrib><creatorcontrib>Palneedi, Haribabu</creatorcontrib><creatorcontrib>Ryu, Jungho</creatorcontrib><creatorcontrib>Dong, Shuxiang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Zhaoqiang</au><au>Annapureddy, Venkateswarlu</au><au>PourhosseiniAsl, MohammadJavad</au><au>Palneedi, Haribabu</au><au>Ryu, Jungho</au><au>Dong, Shuxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-stimulus magnetoelectric energy harvesting</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>43</volume><issue>3</issue><spage>199</spage><epage>205</epage><pages>199-205</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>Harvesting energy from otherwise wasted resources has been intensively investigated as a promising technology especially for enabling the deployment of autonomous wireless-sensor networks for the Internet of Things. Multi-stimulus energy harvesting, simultaneously from different energy sources, provides an attractive opportunity to amplify the power density of harvesters, thereby extending their potential for self-powered devices. In this article, we review recent and ongoing research efforts aimed at enhancing the energy-harvesting performance of magnetoelectric (ME) composite harvesters employing dual stimuli, mechanical vibrations, and magnetic fields. After a brief introduction to vibration, magnetic field, and dual-mode energy harvesting, we survey the key materials utilized for ME energy harvesting. We then focus on progress in this area and discuss relevant ideas to realize electromechanical and magnetoelectric coupling for harvesting energy from mechanical vibrations and magnetic fields simultaneously. We provide perspectives and future directions as well.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2018.31</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7694 |
ispartof | MRS bulletin, 2018-03, Vol.43 (3), p.199-205 |
issn | 0883-7694 1938-1425 |
language | eng |
recordid | cdi_proquest_journals_2012067365 |
source | Springer Nature |
subjects | Alloys Applied and Technical Physics Characterization and Evaluation of Materials Electric fields Energy harvesting Energy Materials Energy resources Engineering Flexibility Harvesters Internet of Things Magnetic fields Magnetism Materials Engineering Materials for Energy Harvesting Materials Science Nanotechnology Researchers Sensors Wireless sensor networks |
title | Dual-stimulus magnetoelectric energy harvesting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-stimulus%20magnetoelectric%20energy%20harvesting&rft.jtitle=MRS%20bulletin&rft.au=Chu,%20Zhaoqiang&rft.date=2018-03-01&rft.volume=43&rft.issue=3&rft.spage=199&rft.epage=205&rft.pages=199-205&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/mrs.2018.31&rft_dat=%3Cproquest_cross%3E2012067365%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-68b55eee82e8f09c34655a9ae553243d3f63dcb70ad7a96cfb844f5d6854c4e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2012067365&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2018_31&rfr_iscdi=true |