Loading…

Dual-stimulus magnetoelectric energy harvesting

Harvesting energy from otherwise wasted resources has been intensively investigated as a promising technology especially for enabling the deployment of autonomous wireless-sensor networks for the Internet of Things. Multi-stimulus energy harvesting, simultaneously from different energy sources, prov...

Full description

Saved in:
Bibliographic Details
Published in:MRS bulletin 2018-03, Vol.43 (3), p.199-205
Main Authors: Chu, Zhaoqiang, Annapureddy, Venkateswarlu, PourhosseiniAsl, MohammadJavad, Palneedi, Haribabu, Ryu, Jungho, Dong, Shuxiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-68b55eee82e8f09c34655a9ae553243d3f63dcb70ad7a96cfb844f5d6854c4e83
cites cdi_FETCH-LOGICAL-c402t-68b55eee82e8f09c34655a9ae553243d3f63dcb70ad7a96cfb844f5d6854c4e83
container_end_page 205
container_issue 3
container_start_page 199
container_title MRS bulletin
container_volume 43
creator Chu, Zhaoqiang
Annapureddy, Venkateswarlu
PourhosseiniAsl, MohammadJavad
Palneedi, Haribabu
Ryu, Jungho
Dong, Shuxiang
description Harvesting energy from otherwise wasted resources has been intensively investigated as a promising technology especially for enabling the deployment of autonomous wireless-sensor networks for the Internet of Things. Multi-stimulus energy harvesting, simultaneously from different energy sources, provides an attractive opportunity to amplify the power density of harvesters, thereby extending their potential for self-powered devices. In this article, we review recent and ongoing research efforts aimed at enhancing the energy-harvesting performance of magnetoelectric (ME) composite harvesters employing dual stimuli, mechanical vibrations, and magnetic fields. After a brief introduction to vibration, magnetic field, and dual-mode energy harvesting, we survey the key materials utilized for ME energy harvesting. We then focus on progress in this area and discuss relevant ideas to realize electromechanical and magnetoelectric coupling for harvesting energy from mechanical vibrations and magnetic fields simultaneously. We provide perspectives and future directions as well.
doi_str_mv 10.1557/mrs.2018.31
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012067365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2018_31</cupid><sourcerecordid>2012067365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-68b55eee82e8f09c34655a9ae553243d3f63dcb70ad7a96cfb844f5d6854c4e83</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpTPyBSozg1I59jjOi8ilVYoHZcpxLSJWPYidI_fe4aiUWxHTLc--rO0KuOUs4QLbsfEhSxnUi-AmZ8VxoymUKp2TGtBY0U7k8JxchbBjjwDKYkeXDZFsaxqab2iksOlv3OA7Yoht94xbYo693i0_rvzGivr4kZ5VtA14d55x8PD2-r17o-u35dXW_pk6ydKRKFwCIqFPUFcudkArA5hYBRCpFKSolSldkzJaZzZWrCi1lBaXSIJ1ELebk5pC79cPXFLvNZph8HytNPDBlKhMKoro9KOeHEDxWZuubzvqd4czsP2LiR_YL2gge9d1Bh6j6Gv1v5t-cHsNtV_imrPF__wPiv3GP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012067365</pqid></control><display><type>article</type><title>Dual-stimulus magnetoelectric energy harvesting</title><source>Springer Nature</source><creator>Chu, Zhaoqiang ; Annapureddy, Venkateswarlu ; PourhosseiniAsl, MohammadJavad ; Palneedi, Haribabu ; Ryu, Jungho ; Dong, Shuxiang</creator><creatorcontrib>Chu, Zhaoqiang ; Annapureddy, Venkateswarlu ; PourhosseiniAsl, MohammadJavad ; Palneedi, Haribabu ; Ryu, Jungho ; Dong, Shuxiang</creatorcontrib><description>Harvesting energy from otherwise wasted resources has been intensively investigated as a promising technology especially for enabling the deployment of autonomous wireless-sensor networks for the Internet of Things. Multi-stimulus energy harvesting, simultaneously from different energy sources, provides an attractive opportunity to amplify the power density of harvesters, thereby extending their potential for self-powered devices. In this article, we review recent and ongoing research efforts aimed at enhancing the energy-harvesting performance of magnetoelectric (ME) composite harvesters employing dual stimuli, mechanical vibrations, and magnetic fields. After a brief introduction to vibration, magnetic field, and dual-mode energy harvesting, we survey the key materials utilized for ME energy harvesting. We then focus on progress in this area and discuss relevant ideas to realize electromechanical and magnetoelectric coupling for harvesting energy from mechanical vibrations and magnetic fields simultaneously. We provide perspectives and future directions as well.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2018.31</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Applied and Technical Physics ; Characterization and Evaluation of Materials ; Electric fields ; Energy harvesting ; Energy Materials ; Energy resources ; Engineering ; Flexibility ; Harvesters ; Internet of Things ; Magnetic fields ; Magnetism ; Materials Engineering ; Materials for Energy Harvesting ; Materials Science ; Nanotechnology ; Researchers ; Sensors ; Wireless sensor networks</subject><ispartof>MRS bulletin, 2018-03, Vol.43 (3), p.199-205</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-68b55eee82e8f09c34655a9ae553243d3f63dcb70ad7a96cfb844f5d6854c4e83</citedby><cites>FETCH-LOGICAL-c402t-68b55eee82e8f09c34655a9ae553243d3f63dcb70ad7a96cfb844f5d6854c4e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chu, Zhaoqiang</creatorcontrib><creatorcontrib>Annapureddy, Venkateswarlu</creatorcontrib><creatorcontrib>PourhosseiniAsl, MohammadJavad</creatorcontrib><creatorcontrib>Palneedi, Haribabu</creatorcontrib><creatorcontrib>Ryu, Jungho</creatorcontrib><creatorcontrib>Dong, Shuxiang</creatorcontrib><title>Dual-stimulus magnetoelectric energy harvesting</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Harvesting energy from otherwise wasted resources has been intensively investigated as a promising technology especially for enabling the deployment of autonomous wireless-sensor networks for the Internet of Things. Multi-stimulus energy harvesting, simultaneously from different energy sources, provides an attractive opportunity to amplify the power density of harvesters, thereby extending their potential for self-powered devices. In this article, we review recent and ongoing research efforts aimed at enhancing the energy-harvesting performance of magnetoelectric (ME) composite harvesters employing dual stimuli, mechanical vibrations, and magnetic fields. After a brief introduction to vibration, magnetic field, and dual-mode energy harvesting, we survey the key materials utilized for ME energy harvesting. We then focus on progress in this area and discuss relevant ideas to realize electromechanical and magnetoelectric coupling for harvesting energy from mechanical vibrations and magnetic fields simultaneously. We provide perspectives and future directions as well.</description><subject>Alloys</subject><subject>Applied and Technical Physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Electric fields</subject><subject>Energy harvesting</subject><subject>Energy Materials</subject><subject>Energy resources</subject><subject>Engineering</subject><subject>Flexibility</subject><subject>Harvesters</subject><subject>Internet of Things</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Materials Engineering</subject><subject>Materials for Energy Harvesting</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Researchers</subject><subject>Sensors</subject><subject>Wireless sensor networks</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQpTPyBSozg1I59jjOi8ilVYoHZcpxLSJWPYidI_fe4aiUWxHTLc--rO0KuOUs4QLbsfEhSxnUi-AmZ8VxoymUKp2TGtBY0U7k8JxchbBjjwDKYkeXDZFsaxqab2iksOlv3OA7Yoht94xbYo693i0_rvzGivr4kZ5VtA14d55x8PD2-r17o-u35dXW_pk6ydKRKFwCIqFPUFcudkArA5hYBRCpFKSolSldkzJaZzZWrCi1lBaXSIJ1ELebk5pC79cPXFLvNZph8HytNPDBlKhMKoro9KOeHEDxWZuubzvqd4czsP2LiR_YL2gge9d1Bh6j6Gv1v5t-cHsNtV_imrPF__wPiv3GP</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Chu, Zhaoqiang</creator><creator>Annapureddy, Venkateswarlu</creator><creator>PourhosseiniAsl, MohammadJavad</creator><creator>Palneedi, Haribabu</creator><creator>Ryu, Jungho</creator><creator>Dong, Shuxiang</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20180301</creationdate><title>Dual-stimulus magnetoelectric energy harvesting</title><author>Chu, Zhaoqiang ; Annapureddy, Venkateswarlu ; PourhosseiniAsl, MohammadJavad ; Palneedi, Haribabu ; Ryu, Jungho ; Dong, Shuxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-68b55eee82e8f09c34655a9ae553243d3f63dcb70ad7a96cfb844f5d6854c4e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloys</topic><topic>Applied and Technical Physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Electric fields</topic><topic>Energy harvesting</topic><topic>Energy Materials</topic><topic>Energy resources</topic><topic>Engineering</topic><topic>Flexibility</topic><topic>Harvesters</topic><topic>Internet of Things</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Materials Engineering</topic><topic>Materials for Energy Harvesting</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Researchers</topic><topic>Sensors</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Zhaoqiang</creatorcontrib><creatorcontrib>Annapureddy, Venkateswarlu</creatorcontrib><creatorcontrib>PourhosseiniAsl, MohammadJavad</creatorcontrib><creatorcontrib>Palneedi, Haribabu</creatorcontrib><creatorcontrib>Ryu, Jungho</creatorcontrib><creatorcontrib>Dong, Shuxiang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Zhaoqiang</au><au>Annapureddy, Venkateswarlu</au><au>PourhosseiniAsl, MohammadJavad</au><au>Palneedi, Haribabu</au><au>Ryu, Jungho</au><au>Dong, Shuxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-stimulus magnetoelectric energy harvesting</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>43</volume><issue>3</issue><spage>199</spage><epage>205</epage><pages>199-205</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>Harvesting energy from otherwise wasted resources has been intensively investigated as a promising technology especially for enabling the deployment of autonomous wireless-sensor networks for the Internet of Things. Multi-stimulus energy harvesting, simultaneously from different energy sources, provides an attractive opportunity to amplify the power density of harvesters, thereby extending their potential for self-powered devices. In this article, we review recent and ongoing research efforts aimed at enhancing the energy-harvesting performance of magnetoelectric (ME) composite harvesters employing dual stimuli, mechanical vibrations, and magnetic fields. After a brief introduction to vibration, magnetic field, and dual-mode energy harvesting, we survey the key materials utilized for ME energy harvesting. We then focus on progress in this area and discuss relevant ideas to realize electromechanical and magnetoelectric coupling for harvesting energy from mechanical vibrations and magnetic fields simultaneously. We provide perspectives and future directions as well.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2018.31</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-7694
ispartof MRS bulletin, 2018-03, Vol.43 (3), p.199-205
issn 0883-7694
1938-1425
language eng
recordid cdi_proquest_journals_2012067365
source Springer Nature
subjects Alloys
Applied and Technical Physics
Characterization and Evaluation of Materials
Electric fields
Energy harvesting
Energy Materials
Energy resources
Engineering
Flexibility
Harvesters
Internet of Things
Magnetic fields
Magnetism
Materials Engineering
Materials for Energy Harvesting
Materials Science
Nanotechnology
Researchers
Sensors
Wireless sensor networks
title Dual-stimulus magnetoelectric energy harvesting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-stimulus%20magnetoelectric%20energy%20harvesting&rft.jtitle=MRS%20bulletin&rft.au=Chu,%20Zhaoqiang&rft.date=2018-03-01&rft.volume=43&rft.issue=3&rft.spage=199&rft.epage=205&rft.pages=199-205&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/mrs.2018.31&rft_dat=%3Cproquest_cross%3E2012067365%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-68b55eee82e8f09c34655a9ae553243d3f63dcb70ad7a96cfb844f5d6854c4e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2012067365&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2018_31&rfr_iscdi=true