Loading…

Strand-Invasion of Duplex DNA by Peptide Nucleic Acid Oligomers

Polyamide oligomers, termed peptide nucleic acids (PNAs), bind with high affinity to both DNA and RNA and offer both antisense and antigene approaches for regulating gene expression. When a PNA binds to a complementary sequence in a double-stranded DNA, one strand of the duplex is displaced, and a s...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1993-11, Vol.90 (22), p.10648-10652
Main Authors: Peffer, Nancy J., Hanvey, Jeffrey C., Bisi, John E., Thomson, Stephen A., Hassman, C. Fred, Noble, Stewart A., Babiss, Lee E.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c620t-8a876d4214c07bcf8b9150d215062e2175d59861b1f6cabcb364d63422424ff3
cites
container_end_page 10652
container_issue 22
container_start_page 10648
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 90
creator Peffer, Nancy J.
Hanvey, Jeffrey C.
Bisi, John E.
Thomson, Stephen A.
Hassman, C. Fred
Noble, Stewart A.
Babiss, Lee E.
description Polyamide oligomers, termed peptide nucleic acids (PNAs), bind with high affinity to both DNA and RNA and offer both antisense and antigene approaches for regulating gene expression. When a PNA binds to a complementary sequence in a double-stranded DNA, one strand of the duplex is displaced, and a stable D-loop is formed. Unlike oligodeoxynucleotides for which binding polarity is determined by the deoxyribose sugar, the unrestrained polyamide backbone of the PNA could permit binding to a DNA target in an orientation-independent manner. We now provide evidence that PNAs can, in fact, bind to their complementary sequence in DNA independent of the DNA-strand polarity-that is, a PNA binds to DNA in both "parallel" and "antiparallel" fashion. With a mixed-sequence 15-mer PNA, kinetic studies of PNA·DNA interactions revealed that D-loop formation was rapid and the complex was stable for several hours. However, when measured either by gel-mobility-shift analysis or RNA polymerase II-elongation termination, D-loop formation was salt dependent, but PNA-strand dissociation was not salt dependent. We observed that D-loop-containing DNA fragments had anomalous gel mobilities that varied as a function of the position of the D-loop relative to the DNA termini. On the basis of permutation analysis, the decreased mobility of the PNA·DNA complex was attributed to a bend in the DNA at or near the D-loop.
doi_str_mv 10.1073/pnas.90.22.10648
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201266961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2363284</jstor_id><sourcerecordid>2363284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-8a876d4214c07bcf8b9150d215062e2175d59861b1f6cabcb364d63422424ff3</originalsourceid><addsrcrecordid>eNqFkdFr1TAYxYM45nX67oNikTF86fXL1zRNQZDL5uZgbIJ7D2mazlxym65px_bfL_XWy_RBXxLC-Z0vJzmEvKGwpFBkn7pWhWUJS8R45kw8IwsKJU05K-E5WQBgkQqG7AV5GcIaAMpcwD7ZF8gEzfmCfPkx9Kqt0_P2TgXr28Q3ycnYOXOfnFyukuoh-W66wdYmuRy1M1YnK23r5MrZG78xfXhF9hrlgnk97wfk-vTr9fG39OLq7Px4dZFqjjCkQomC1wwp01BUuhFVSXOoMS4cDdIir_NScFrRhmtV6SrjrOYZQ4zhmyY7IJ-3Y7ux2phamzbGdrLr7Ub1D9IrK_9UWvtT3vg7yQqRsWg_mu29vx1NGOTGBm2cU63xY5AFB8EE0v-ClBcQE0MEP_wFrv3Yt_ELJAJFzks-TYMtpHsfQm-aXWAKcupPTv3JEiSi_NVftLx7-tCdYS4s6oezroJWronlaRt2WCZYSWEa83HGpgt-q08uks3o3GDuh4i-_zcaibdbYh0G3-8QzHiGgmWPWu_DEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201266961</pqid></control><display><type>article</type><title>Strand-Invasion of Duplex DNA by Peptide Nucleic Acid Oligomers</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Peffer, Nancy J. ; Hanvey, Jeffrey C. ; Bisi, John E. ; Thomson, Stephen A. ; Hassman, C. Fred ; Noble, Stewart A. ; Babiss, Lee E.</creator><creatorcontrib>Peffer, Nancy J. ; Hanvey, Jeffrey C. ; Bisi, John E. ; Thomson, Stephen A. ; Hassman, C. Fred ; Noble, Stewart A. ; Babiss, Lee E.</creatorcontrib><description>Polyamide oligomers, termed peptide nucleic acids (PNAs), bind with high affinity to both DNA and RNA and offer both antisense and antigene approaches for regulating gene expression. When a PNA binds to a complementary sequence in a double-stranded DNA, one strand of the duplex is displaced, and a stable D-loop is formed. Unlike oligodeoxynucleotides for which binding polarity is determined by the deoxyribose sugar, the unrestrained polyamide backbone of the PNA could permit binding to a DNA target in an orientation-independent manner. We now provide evidence that PNAs can, in fact, bind to their complementary sequence in DNA independent of the DNA-strand polarity-that is, a PNA binds to DNA in both "parallel" and "antiparallel" fashion. With a mixed-sequence 15-mer PNA, kinetic studies of PNA·DNA interactions revealed that D-loop formation was rapid and the complex was stable for several hours. However, when measured either by gel-mobility-shift analysis or RNA polymerase II-elongation termination, D-loop formation was salt dependent, but PNA-strand dissociation was not salt dependent. We observed that D-loop-containing DNA fragments had anomalous gel mobilities that varied as a function of the position of the D-loop relative to the DNA termini. On the basis of permutation analysis, the decreased mobility of the PNA·DNA complex was attributed to a bend in the DNA at or near the D-loop.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.90.22.10648</identifier><identifier>PMID: 8248156</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Analytical, structural and metabolic biochemistry ; Base Sequence ; Bending ; Biochemistry ; Biological and medical sciences ; Biological Assay ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; Dna, deoxyribonucleoproteins ; Fundamental and applied biological sciences. Psychology ; Gels ; Hydrogen Bonding ; Molecular Sequence Data ; Molecules ; Nucleic Acid Conformation ; Nucleic acids ; Nucleic Acids - chemistry ; Oligodeoxyribonucleotides - chemistry ; Oligomers ; Peptide nucleic acids ; Plasmids ; RNA ; Salts ; Sodium Chloride - chemistry ; Structure-Activity Relationship ; Transcription, Genetic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1993-11, Vol.90 (22), p.10648-10652</ispartof><rights>Copyright 1993 National Academy of Sciences of the United States of America</rights><rights>1994 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Nov 15, 1993</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-8a876d4214c07bcf8b9150d215062e2175d59861b1f6cabcb364d63422424ff3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/90/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2363284$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2363284$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774,58219,58452</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3849108$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8248156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peffer, Nancy J.</creatorcontrib><creatorcontrib>Hanvey, Jeffrey C.</creatorcontrib><creatorcontrib>Bisi, John E.</creatorcontrib><creatorcontrib>Thomson, Stephen A.</creatorcontrib><creatorcontrib>Hassman, C. Fred</creatorcontrib><creatorcontrib>Noble, Stewart A.</creatorcontrib><creatorcontrib>Babiss, Lee E.</creatorcontrib><title>Strand-Invasion of Duplex DNA by Peptide Nucleic Acid Oligomers</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Polyamide oligomers, termed peptide nucleic acids (PNAs), bind with high affinity to both DNA and RNA and offer both antisense and antigene approaches for regulating gene expression. When a PNA binds to a complementary sequence in a double-stranded DNA, one strand of the duplex is displaced, and a stable D-loop is formed. Unlike oligodeoxynucleotides for which binding polarity is determined by the deoxyribose sugar, the unrestrained polyamide backbone of the PNA could permit binding to a DNA target in an orientation-independent manner. We now provide evidence that PNAs can, in fact, bind to their complementary sequence in DNA independent of the DNA-strand polarity-that is, a PNA binds to DNA in both "parallel" and "antiparallel" fashion. With a mixed-sequence 15-mer PNA, kinetic studies of PNA·DNA interactions revealed that D-loop formation was rapid and the complex was stable for several hours. However, when measured either by gel-mobility-shift analysis or RNA polymerase II-elongation termination, D-loop formation was salt dependent, but PNA-strand dissociation was not salt dependent. We observed that D-loop-containing DNA fragments had anomalous gel mobilities that varied as a function of the position of the D-loop relative to the DNA termini. On the basis of permutation analysis, the decreased mobility of the PNA·DNA complex was attributed to a bend in the DNA at or near the D-loop.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Base Sequence</subject><subject>Bending</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biological Assay</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Dna, deoxyribonucleoproteins</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels</subject><subject>Hydrogen Bonding</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic acids</subject><subject>Nucleic Acids - chemistry</subject><subject>Oligodeoxyribonucleotides - chemistry</subject><subject>Oligomers</subject><subject>Peptide nucleic acids</subject><subject>Plasmids</subject><subject>RNA</subject><subject>Salts</subject><subject>Sodium Chloride - chemistry</subject><subject>Structure-Activity Relationship</subject><subject>Transcription, Genetic</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkdFr1TAYxYM45nX67oNikTF86fXL1zRNQZDL5uZgbIJ7D2mazlxym65px_bfL_XWy_RBXxLC-Z0vJzmEvKGwpFBkn7pWhWUJS8R45kw8IwsKJU05K-E5WQBgkQqG7AV5GcIaAMpcwD7ZF8gEzfmCfPkx9Kqt0_P2TgXr28Q3ycnYOXOfnFyukuoh-W66wdYmuRy1M1YnK23r5MrZG78xfXhF9hrlgnk97wfk-vTr9fG39OLq7Px4dZFqjjCkQomC1wwp01BUuhFVSXOoMS4cDdIir_NScFrRhmtV6SrjrOYZQ4zhmyY7IJ-3Y7ux2phamzbGdrLr7Ub1D9IrK_9UWvtT3vg7yQqRsWg_mu29vx1NGOTGBm2cU63xY5AFB8EE0v-ClBcQE0MEP_wFrv3Yt_ELJAJFzks-TYMtpHsfQm-aXWAKcupPTv3JEiSi_NVftLx7-tCdYS4s6oezroJWronlaRt2WCZYSWEa83HGpgt-q08uks3o3GDuh4i-_zcaibdbYh0G3-8QzHiGgmWPWu_DEQ</recordid><startdate>19931115</startdate><enddate>19931115</enddate><creator>Peffer, Nancy J.</creator><creator>Hanvey, Jeffrey C.</creator><creator>Bisi, John E.</creator><creator>Thomson, Stephen A.</creator><creator>Hassman, C. Fred</creator><creator>Noble, Stewart A.</creator><creator>Babiss, Lee E.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19931115</creationdate><title>Strand-Invasion of Duplex DNA by Peptide Nucleic Acid Oligomers</title><author>Peffer, Nancy J. ; Hanvey, Jeffrey C. ; Bisi, John E. ; Thomson, Stephen A. ; Hassman, C. Fred ; Noble, Stewart A. ; Babiss, Lee E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-8a876d4214c07bcf8b9150d215062e2175d59861b1f6cabcb364d63422424ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Base Sequence</topic><topic>Bending</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biological Assay</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Dna, deoxyribonucleoproteins</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels</topic><topic>Hydrogen Bonding</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic acids</topic><topic>Nucleic Acids - chemistry</topic><topic>Oligodeoxyribonucleotides - chemistry</topic><topic>Oligomers</topic><topic>Peptide nucleic acids</topic><topic>Plasmids</topic><topic>RNA</topic><topic>Salts</topic><topic>Sodium Chloride - chemistry</topic><topic>Structure-Activity Relationship</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peffer, Nancy J.</creatorcontrib><creatorcontrib>Hanvey, Jeffrey C.</creatorcontrib><creatorcontrib>Bisi, John E.</creatorcontrib><creatorcontrib>Thomson, Stephen A.</creatorcontrib><creatorcontrib>Hassman, C. Fred</creatorcontrib><creatorcontrib>Noble, Stewart A.</creatorcontrib><creatorcontrib>Babiss, Lee E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peffer, Nancy J.</au><au>Hanvey, Jeffrey C.</au><au>Bisi, John E.</au><au>Thomson, Stephen A.</au><au>Hassman, C. Fred</au><au>Noble, Stewart A.</au><au>Babiss, Lee E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strand-Invasion of Duplex DNA by Peptide Nucleic Acid Oligomers</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1993-11-15</date><risdate>1993</risdate><volume>90</volume><issue>22</issue><spage>10648</spage><epage>10652</epage><pages>10648-10652</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Polyamide oligomers, termed peptide nucleic acids (PNAs), bind with high affinity to both DNA and RNA and offer both antisense and antigene approaches for regulating gene expression. When a PNA binds to a complementary sequence in a double-stranded DNA, one strand of the duplex is displaced, and a stable D-loop is formed. Unlike oligodeoxynucleotides for which binding polarity is determined by the deoxyribose sugar, the unrestrained polyamide backbone of the PNA could permit binding to a DNA target in an orientation-independent manner. We now provide evidence that PNAs can, in fact, bind to their complementary sequence in DNA independent of the DNA-strand polarity-that is, a PNA binds to DNA in both "parallel" and "antiparallel" fashion. With a mixed-sequence 15-mer PNA, kinetic studies of PNA·DNA interactions revealed that D-loop formation was rapid and the complex was stable for several hours. However, when measured either by gel-mobility-shift analysis or RNA polymerase II-elongation termination, D-loop formation was salt dependent, but PNA-strand dissociation was not salt dependent. We observed that D-loop-containing DNA fragments had anomalous gel mobilities that varied as a function of the position of the D-loop relative to the DNA termini. On the basis of permutation analysis, the decreased mobility of the PNA·DNA complex was attributed to a bend in the DNA at or near the D-loop.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8248156</pmid><doi>10.1073/pnas.90.22.10648</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1993-11, Vol.90 (22), p.10648-10652
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201266961
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Analytical, structural and metabolic biochemistry
Base Sequence
Bending
Biochemistry
Biological and medical sciences
Biological Assay
Deoxyribonucleic acid
DNA
DNA - chemistry
Dna, deoxyribonucleoproteins
Fundamental and applied biological sciences. Psychology
Gels
Hydrogen Bonding
Molecular Sequence Data
Molecules
Nucleic Acid Conformation
Nucleic acids
Nucleic Acids - chemistry
Oligodeoxyribonucleotides - chemistry
Oligomers
Peptide nucleic acids
Plasmids
RNA
Salts
Sodium Chloride - chemistry
Structure-Activity Relationship
Transcription, Genetic
title Strand-Invasion of Duplex DNA by Peptide Nucleic Acid Oligomers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strand-Invasion%20of%20Duplex%20DNA%20by%20Peptide%20Nucleic%20Acid%20Oligomers&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Peffer,%20Nancy%20J.&rft.date=1993-11-15&rft.volume=90&rft.issue=22&rft.spage=10648&rft.epage=10652&rft.pages=10648-10652&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.90.22.10648&rft_dat=%3Cjstor_proqu%3E2363284%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c620t-8a876d4214c07bcf8b9150d215062e2175d59861b1f6cabcb364d63422424ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201266961&rft_id=info:pmid/8248156&rft_jstor_id=2363284&rfr_iscdi=true