Loading…

Carbon Monoxide: A Role in Carotid Body Chemoreception

Carbon monoxide (CO), produced endogenously by heme oxygenase, has been implicated as a neuronal messenger. Carotid bodies are sensory organs that regulate ventilation by responding to alterations of blood oxygen, CO2, and pH. Changes in blood gases are sensed by glomus cells in the carotid body tha...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1995-03, Vol.92 (6), p.1994-1997
Main Authors: Prabhaker, Nanduri R., Dinerman, Jay L., Agani, Faton H., Snyder, Solomon H.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon monoxide (CO), produced endogenously by heme oxygenase, has been implicated as a neuronal messenger. Carotid bodies are sensory organs that regulate ventilation by responding to alterations of blood oxygen, CO2, and pH. Changes in blood gases are sensed by glomus cells in the carotid body that synapse on afferent terminals of the carotid sinus nerve that projects to respiratory-related neurons in the brainstem. Using immunocytochemistry, we demonstrate that heme oxygenase 2 is localized to glomus cells in the cat and rat carotid bodies. Physiological studies show that zinc protoporphyrin IX, a potent heme oxygenase inhibitor, markedly increases carotid body sensory activity, while copper protoporphyrin IX, which does not inhibit the enzyme, is inactive. Exogenous CO reverses the stimulatory effects of zinc protoporphyrin IX. These results suggest that glomus cells are capable of synthesizing CO and endogenous CO appears to be a physiologic regulator of carotid body sensory activity.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.92.6.1994