Loading…
Characterization of the Nanoscale Properties of Individual Amyloid Fibrils
We report the detailed mechanical characterization of individual amyloid fibrils by atomic force microscopy and spectroscopy. These self-assembling materials, formed here from the protein insulin, were shown to have a strength of 0.6 ± 0.4 GPa, comparable to that of steel (0.6-1.8 GPa), and a mechan...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2006-10, Vol.103 (43), p.15806-15811 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c565t-8dcaf28fdd8e7e9f3b6c5c5e4a071b9df203aeb1f56ead1cd4ccbb089e549dc33 |
---|---|
cites | cdi_FETCH-LOGICAL-c565t-8dcaf28fdd8e7e9f3b6c5c5e4a071b9df203aeb1f56ead1cd4ccbb089e549dc33 |
container_end_page | 15811 |
container_issue | 43 |
container_start_page | 15806 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 103 |
creator | Smith, Jeffrey F. Knowles, Tuomas P. J. Dobson, Christopher M. MacPhee, Cait E. Welland, Mark E. |
description | We report the detailed mechanical characterization of individual amyloid fibrils by atomic force microscopy and spectroscopy. These self-assembling materials, formed here from the protein insulin, were shown to have a strength of 0.6 ± 0.4 GPa, comparable to that of steel (0.6-1.8 GPa), and a mechanical stiffness, as measured by Young's modulus, of 3.3 ± 0.4 GPa, comparable to that of silk (1-10 GPa). The values of these parameters reveal that the fibrils possess properties that make these structures highly attractive for future technological applications. In addition, analysis of the solution-state growth kinetics indicated a breakage rate constant of 1.7 ± 1.3 x 10⁻⁸ s⁻¹, which reveals that a fibril 10 ¼m in length breaks spontaneously on average every 47 min, suggesting that internal fracturing is likely to be of fundamental importance in the proliferation of amyloid fibrils and therefore for understanding the progression of their associated pathogenic disorders. |
doi_str_mv | 10.1073/pnas.0604035103 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201286980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30052061</jstor_id><sourcerecordid>30052061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-8dcaf28fdd8e7e9f3b6c5c5e4a071b9df203aeb1f56ead1cd4ccbb089e549dc33</originalsourceid><addsrcrecordid>eNqF0b9v1DAUB3ALgehRmJlAERtD2uf4R5wFqTq1UFS1DDBbjv3M-ZSLD9upKH99c7pTDyYmD-_jr5--JuQthTMKLTvfjiafgQQOTFBgz8iCQkdryTt4ThYATVsr3vAT8irnNQB0QsFLckJbYEoAX5Cvy5VJxhZM4Y8pIY5V9FVZYXVrxpitGbD6luIWUwmYd7Pr0YX74CYzVBebhyEGV12FPoUhvyYvvBkyvjmcp-TH1eX35Zf65u7z9fLiprZCilIrZ41vlHdOYYudZ720wgrkBlrad843wAz21AuJxlHruLV9D6pDwTtnGTsln_a526nfoLM4lmQGvU1hY9KDjibofydjWOmf8V5TyQQoPgd8OASk-GvCXPQ6Tmmcd9YN0EbJTsGMzvfIpphzQv_0AAW9617vutfH7ucb7__e6-gPZc_g4wHsbh7jmOZM0_lnpPbTMBT8XWZb_cfO5N2erHOJ6ckwANGApOwRlfqkrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201286980</pqid></control><display><type>article</type><title>Characterization of the Nanoscale Properties of Individual Amyloid Fibrils</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Smith, Jeffrey F. ; Knowles, Tuomas P. J. ; Dobson, Christopher M. ; MacPhee, Cait E. ; Welland, Mark E.</creator><creatorcontrib>Smith, Jeffrey F. ; Knowles, Tuomas P. J. ; Dobson, Christopher M. ; MacPhee, Cait E. ; Welland, Mark E.</creatorcontrib><description>We report the detailed mechanical characterization of individual amyloid fibrils by atomic force microscopy and spectroscopy. These self-assembling materials, formed here from the protein insulin, were shown to have a strength of 0.6 ± 0.4 GPa, comparable to that of steel (0.6-1.8 GPa), and a mechanical stiffness, as measured by Young's modulus, of 3.3 ± 0.4 GPa, comparable to that of silk (1-10 GPa). The values of these parameters reveal that the fibrils possess properties that make these structures highly attractive for future technological applications. In addition, analysis of the solution-state growth kinetics indicated a breakage rate constant of 1.7 ± 1.3 x 10⁻⁸ s⁻¹, which reveals that a fibril 10 ¼m in length breaks spontaneously on average every 47 min, suggesting that internal fracturing is likely to be of fundamental importance in the proliferation of amyloid fibrils and therefore for understanding the progression of their associated pathogenic disorders.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0604035103</identifier><identifier>PMID: 17038504</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amyloid - chemistry ; Amyloid - metabolism ; Amyloid - ultrastructure ; Amyloids ; Animals ; Bending ; Biological Sciences ; Cattle ; Insulin ; Insulin - chemistry ; Insulin - metabolism ; Kinetics ; Microscopy ; Microscopy, Atomic Force ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Pathogens ; Polymers ; Protein Binding ; Proteins ; Solar fibrils ; Spectroscopy ; Spectrum analysis ; Spring constant ; Stiffness ; Structural deflection</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-10, Vol.103 (43), p.15806-15811</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 24, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-8dcaf28fdd8e7e9f3b6c5c5e4a071b9df203aeb1f56ead1cd4ccbb089e549dc33</citedby><cites>FETCH-LOGICAL-c565t-8dcaf28fdd8e7e9f3b6c5c5e4a071b9df203aeb1f56ead1cd4ccbb089e549dc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/43.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30052061$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30052061$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17038504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Jeffrey F.</creatorcontrib><creatorcontrib>Knowles, Tuomas P. J.</creatorcontrib><creatorcontrib>Dobson, Christopher M.</creatorcontrib><creatorcontrib>MacPhee, Cait E.</creatorcontrib><creatorcontrib>Welland, Mark E.</creatorcontrib><title>Characterization of the Nanoscale Properties of Individual Amyloid Fibrils</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We report the detailed mechanical characterization of individual amyloid fibrils by atomic force microscopy and spectroscopy. These self-assembling materials, formed here from the protein insulin, were shown to have a strength of 0.6 ± 0.4 GPa, comparable to that of steel (0.6-1.8 GPa), and a mechanical stiffness, as measured by Young's modulus, of 3.3 ± 0.4 GPa, comparable to that of silk (1-10 GPa). The values of these parameters reveal that the fibrils possess properties that make these structures highly attractive for future technological applications. In addition, analysis of the solution-state growth kinetics indicated a breakage rate constant of 1.7 ± 1.3 x 10⁻⁸ s⁻¹, which reveals that a fibril 10 ¼m in length breaks spontaneously on average every 47 min, suggesting that internal fracturing is likely to be of fundamental importance in the proliferation of amyloid fibrils and therefore for understanding the progression of their associated pathogenic disorders.</description><subject>Amyloid - chemistry</subject><subject>Amyloid - metabolism</subject><subject>Amyloid - ultrastructure</subject><subject>Amyloids</subject><subject>Animals</subject><subject>Bending</subject><subject>Biological Sciences</subject><subject>Cattle</subject><subject>Insulin</subject><subject>Insulin - chemistry</subject><subject>Insulin - metabolism</subject><subject>Kinetics</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Pathogens</subject><subject>Polymers</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Solar fibrils</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spring constant</subject><subject>Stiffness</subject><subject>Structural deflection</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0b9v1DAUB3ALgehRmJlAERtD2uf4R5wFqTq1UFS1DDBbjv3M-ZSLD9upKH99c7pTDyYmD-_jr5--JuQthTMKLTvfjiafgQQOTFBgz8iCQkdryTt4ThYATVsr3vAT8irnNQB0QsFLckJbYEoAX5Cvy5VJxhZM4Y8pIY5V9FVZYXVrxpitGbD6luIWUwmYd7Pr0YX74CYzVBebhyEGV12FPoUhvyYvvBkyvjmcp-TH1eX35Zf65u7z9fLiprZCilIrZ41vlHdOYYudZ720wgrkBlrad843wAz21AuJxlHruLV9D6pDwTtnGTsln_a526nfoLM4lmQGvU1hY9KDjibofydjWOmf8V5TyQQoPgd8OASk-GvCXPQ6Tmmcd9YN0EbJTsGMzvfIpphzQv_0AAW9617vutfH7ucb7__e6-gPZc_g4wHsbh7jmOZM0_lnpPbTMBT8XWZb_cfO5N2erHOJ6ckwANGApOwRlfqkrw</recordid><startdate>20061024</startdate><enddate>20061024</enddate><creator>Smith, Jeffrey F.</creator><creator>Knowles, Tuomas P. J.</creator><creator>Dobson, Christopher M.</creator><creator>MacPhee, Cait E.</creator><creator>Welland, Mark E.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20061024</creationdate><title>Characterization of the Nanoscale Properties of Individual Amyloid Fibrils</title><author>Smith, Jeffrey F. ; Knowles, Tuomas P. J. ; Dobson, Christopher M. ; MacPhee, Cait E. ; Welland, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-8dcaf28fdd8e7e9f3b6c5c5e4a071b9df203aeb1f56ead1cd4ccbb089e549dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amyloid - chemistry</topic><topic>Amyloid - metabolism</topic><topic>Amyloid - ultrastructure</topic><topic>Amyloids</topic><topic>Animals</topic><topic>Bending</topic><topic>Biological Sciences</topic><topic>Cattle</topic><topic>Insulin</topic><topic>Insulin - chemistry</topic><topic>Insulin - metabolism</topic><topic>Kinetics</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Pathogens</topic><topic>Polymers</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Solar fibrils</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spring constant</topic><topic>Stiffness</topic><topic>Structural deflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Jeffrey F.</creatorcontrib><creatorcontrib>Knowles, Tuomas P. J.</creatorcontrib><creatorcontrib>Dobson, Christopher M.</creatorcontrib><creatorcontrib>MacPhee, Cait E.</creatorcontrib><creatorcontrib>Welland, Mark E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Jeffrey F.</au><au>Knowles, Tuomas P. J.</au><au>Dobson, Christopher M.</au><au>MacPhee, Cait E.</au><au>Welland, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the Nanoscale Properties of Individual Amyloid Fibrils</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-10-24</date><risdate>2006</risdate><volume>103</volume><issue>43</issue><spage>15806</spage><epage>15811</epage><pages>15806-15811</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We report the detailed mechanical characterization of individual amyloid fibrils by atomic force microscopy and spectroscopy. These self-assembling materials, formed here from the protein insulin, were shown to have a strength of 0.6 ± 0.4 GPa, comparable to that of steel (0.6-1.8 GPa), and a mechanical stiffness, as measured by Young's modulus, of 3.3 ± 0.4 GPa, comparable to that of silk (1-10 GPa). The values of these parameters reveal that the fibrils possess properties that make these structures highly attractive for future technological applications. In addition, analysis of the solution-state growth kinetics indicated a breakage rate constant of 1.7 ± 1.3 x 10⁻⁸ s⁻¹, which reveals that a fibril 10 ¼m in length breaks spontaneously on average every 47 min, suggesting that internal fracturing is likely to be of fundamental importance in the proliferation of amyloid fibrils and therefore for understanding the progression of their associated pathogenic disorders.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17038504</pmid><doi>10.1073/pnas.0604035103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2006-10, Vol.103 (43), p.15806-15811 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201286980 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Amyloid - chemistry Amyloid - metabolism Amyloid - ultrastructure Amyloids Animals Bending Biological Sciences Cattle Insulin Insulin - chemistry Insulin - metabolism Kinetics Microscopy Microscopy, Atomic Force Nanostructures - chemistry Nanostructures - ultrastructure Pathogens Polymers Protein Binding Proteins Solar fibrils Spectroscopy Spectrum analysis Spring constant Stiffness Structural deflection |
title | Characterization of the Nanoscale Properties of Individual Amyloid Fibrils |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20Nanoscale%20Properties%20of%20Individual%20Amyloid%20Fibrils&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Smith,%20Jeffrey%20F.&rft.date=2006-10-24&rft.volume=103&rft.issue=43&rft.spage=15806&rft.epage=15811&rft.pages=15806-15811&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0604035103&rft_dat=%3Cjstor_proqu%3E30052061%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c565t-8dcaf28fdd8e7e9f3b6c5c5e4a071b9df203aeb1f56ead1cd4ccbb089e549dc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201286980&rft_id=info:pmid/17038504&rft_jstor_id=30052061&rfr_iscdi=true |