Loading…

Characterization of the Nanoscale Properties of Individual Amyloid Fibrils

We report the detailed mechanical characterization of individual amyloid fibrils by atomic force microscopy and spectroscopy. These self-assembling materials, formed here from the protein insulin, were shown to have a strength of 0.6 ± 0.4 GPa, comparable to that of steel (0.6-1.8 GPa), and a mechan...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2006-10, Vol.103 (43), p.15806-15811
Main Authors: Smith, Jeffrey F., Knowles, Tuomas P. J., Dobson, Christopher M., MacPhee, Cait E., Welland, Mark E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c565t-8dcaf28fdd8e7e9f3b6c5c5e4a071b9df203aeb1f56ead1cd4ccbb089e549dc33
cites cdi_FETCH-LOGICAL-c565t-8dcaf28fdd8e7e9f3b6c5c5e4a071b9df203aeb1f56ead1cd4ccbb089e549dc33
container_end_page 15811
container_issue 43
container_start_page 15806
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Smith, Jeffrey F.
Knowles, Tuomas P. J.
Dobson, Christopher M.
MacPhee, Cait E.
Welland, Mark E.
description We report the detailed mechanical characterization of individual amyloid fibrils by atomic force microscopy and spectroscopy. These self-assembling materials, formed here from the protein insulin, were shown to have a strength of 0.6 ± 0.4 GPa, comparable to that of steel (0.6-1.8 GPa), and a mechanical stiffness, as measured by Young's modulus, of 3.3 ± 0.4 GPa, comparable to that of silk (1-10 GPa). The values of these parameters reveal that the fibrils possess properties that make these structures highly attractive for future technological applications. In addition, analysis of the solution-state growth kinetics indicated a breakage rate constant of 1.7 ± 1.3 x 10⁻⁸ s⁻¹, which reveals that a fibril 10 ¼m in length breaks spontaneously on average every 47 min, suggesting that internal fracturing is likely to be of fundamental importance in the proliferation of amyloid fibrils and therefore for understanding the progression of their associated pathogenic disorders.
doi_str_mv 10.1073/pnas.0604035103
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201286980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30052061</jstor_id><sourcerecordid>30052061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-8dcaf28fdd8e7e9f3b6c5c5e4a071b9df203aeb1f56ead1cd4ccbb089e549dc33</originalsourceid><addsrcrecordid>eNqF0b9v1DAUB3ALgehRmJlAERtD2uf4R5wFqTq1UFS1DDBbjv3M-ZSLD9upKH99c7pTDyYmD-_jr5--JuQthTMKLTvfjiafgQQOTFBgz8iCQkdryTt4ThYATVsr3vAT8irnNQB0QsFLckJbYEoAX5Cvy5VJxhZM4Y8pIY5V9FVZYXVrxpitGbD6luIWUwmYd7Pr0YX74CYzVBebhyEGV12FPoUhvyYvvBkyvjmcp-TH1eX35Zf65u7z9fLiprZCilIrZ41vlHdOYYudZ720wgrkBlrad843wAz21AuJxlHruLV9D6pDwTtnGTsln_a526nfoLM4lmQGvU1hY9KDjibofydjWOmf8V5TyQQoPgd8OASk-GvCXPQ6Tmmcd9YN0EbJTsGMzvfIpphzQv_0AAW9617vutfH7ucb7__e6-gPZc_g4wHsbh7jmOZM0_lnpPbTMBT8XWZb_cfO5N2erHOJ6ckwANGApOwRlfqkrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201286980</pqid></control><display><type>article</type><title>Characterization of the Nanoscale Properties of Individual Amyloid Fibrils</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Smith, Jeffrey F. ; Knowles, Tuomas P. J. ; Dobson, Christopher M. ; MacPhee, Cait E. ; Welland, Mark E.</creator><creatorcontrib>Smith, Jeffrey F. ; Knowles, Tuomas P. J. ; Dobson, Christopher M. ; MacPhee, Cait E. ; Welland, Mark E.</creatorcontrib><description>We report the detailed mechanical characterization of individual amyloid fibrils by atomic force microscopy and spectroscopy. These self-assembling materials, formed here from the protein insulin, were shown to have a strength of 0.6 ± 0.4 GPa, comparable to that of steel (0.6-1.8 GPa), and a mechanical stiffness, as measured by Young's modulus, of 3.3 ± 0.4 GPa, comparable to that of silk (1-10 GPa). The values of these parameters reveal that the fibrils possess properties that make these structures highly attractive for future technological applications. In addition, analysis of the solution-state growth kinetics indicated a breakage rate constant of 1.7 ± 1.3 x 10⁻⁸ s⁻¹, which reveals that a fibril 10 ¼m in length breaks spontaneously on average every 47 min, suggesting that internal fracturing is likely to be of fundamental importance in the proliferation of amyloid fibrils and therefore for understanding the progression of their associated pathogenic disorders.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0604035103</identifier><identifier>PMID: 17038504</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amyloid - chemistry ; Amyloid - metabolism ; Amyloid - ultrastructure ; Amyloids ; Animals ; Bending ; Biological Sciences ; Cattle ; Insulin ; Insulin - chemistry ; Insulin - metabolism ; Kinetics ; Microscopy ; Microscopy, Atomic Force ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Pathogens ; Polymers ; Protein Binding ; Proteins ; Solar fibrils ; Spectroscopy ; Spectrum analysis ; Spring constant ; Stiffness ; Structural deflection</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-10, Vol.103 (43), p.15806-15811</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 24, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-8dcaf28fdd8e7e9f3b6c5c5e4a071b9df203aeb1f56ead1cd4ccbb089e549dc33</citedby><cites>FETCH-LOGICAL-c565t-8dcaf28fdd8e7e9f3b6c5c5e4a071b9df203aeb1f56ead1cd4ccbb089e549dc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/43.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30052061$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30052061$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17038504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Jeffrey F.</creatorcontrib><creatorcontrib>Knowles, Tuomas P. J.</creatorcontrib><creatorcontrib>Dobson, Christopher M.</creatorcontrib><creatorcontrib>MacPhee, Cait E.</creatorcontrib><creatorcontrib>Welland, Mark E.</creatorcontrib><title>Characterization of the Nanoscale Properties of Individual Amyloid Fibrils</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We report the detailed mechanical characterization of individual amyloid fibrils by atomic force microscopy and spectroscopy. These self-assembling materials, formed here from the protein insulin, were shown to have a strength of 0.6 ± 0.4 GPa, comparable to that of steel (0.6-1.8 GPa), and a mechanical stiffness, as measured by Young's modulus, of 3.3 ± 0.4 GPa, comparable to that of silk (1-10 GPa). The values of these parameters reveal that the fibrils possess properties that make these structures highly attractive for future technological applications. In addition, analysis of the solution-state growth kinetics indicated a breakage rate constant of 1.7 ± 1.3 x 10⁻⁸ s⁻¹, which reveals that a fibril 10 ¼m in length breaks spontaneously on average every 47 min, suggesting that internal fracturing is likely to be of fundamental importance in the proliferation of amyloid fibrils and therefore for understanding the progression of their associated pathogenic disorders.</description><subject>Amyloid - chemistry</subject><subject>Amyloid - metabolism</subject><subject>Amyloid - ultrastructure</subject><subject>Amyloids</subject><subject>Animals</subject><subject>Bending</subject><subject>Biological Sciences</subject><subject>Cattle</subject><subject>Insulin</subject><subject>Insulin - chemistry</subject><subject>Insulin - metabolism</subject><subject>Kinetics</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Pathogens</subject><subject>Polymers</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Solar fibrils</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spring constant</subject><subject>Stiffness</subject><subject>Structural deflection</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0b9v1DAUB3ALgehRmJlAERtD2uf4R5wFqTq1UFS1DDBbjv3M-ZSLD9upKH99c7pTDyYmD-_jr5--JuQthTMKLTvfjiafgQQOTFBgz8iCQkdryTt4ThYATVsr3vAT8irnNQB0QsFLckJbYEoAX5Cvy5VJxhZM4Y8pIY5V9FVZYXVrxpitGbD6luIWUwmYd7Pr0YX74CYzVBebhyEGV12FPoUhvyYvvBkyvjmcp-TH1eX35Zf65u7z9fLiprZCilIrZ41vlHdOYYudZ720wgrkBlrad843wAz21AuJxlHruLV9D6pDwTtnGTsln_a526nfoLM4lmQGvU1hY9KDjibofydjWOmf8V5TyQQoPgd8OASk-GvCXPQ6Tmmcd9YN0EbJTsGMzvfIpphzQv_0AAW9617vutfH7ucb7__e6-gPZc_g4wHsbh7jmOZM0_lnpPbTMBT8XWZb_cfO5N2erHOJ6ckwANGApOwRlfqkrw</recordid><startdate>20061024</startdate><enddate>20061024</enddate><creator>Smith, Jeffrey F.</creator><creator>Knowles, Tuomas P. J.</creator><creator>Dobson, Christopher M.</creator><creator>MacPhee, Cait E.</creator><creator>Welland, Mark E.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20061024</creationdate><title>Characterization of the Nanoscale Properties of Individual Amyloid Fibrils</title><author>Smith, Jeffrey F. ; Knowles, Tuomas P. J. ; Dobson, Christopher M. ; MacPhee, Cait E. ; Welland, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-8dcaf28fdd8e7e9f3b6c5c5e4a071b9df203aeb1f56ead1cd4ccbb089e549dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amyloid - chemistry</topic><topic>Amyloid - metabolism</topic><topic>Amyloid - ultrastructure</topic><topic>Amyloids</topic><topic>Animals</topic><topic>Bending</topic><topic>Biological Sciences</topic><topic>Cattle</topic><topic>Insulin</topic><topic>Insulin - chemistry</topic><topic>Insulin - metabolism</topic><topic>Kinetics</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Pathogens</topic><topic>Polymers</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Solar fibrils</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spring constant</topic><topic>Stiffness</topic><topic>Structural deflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Jeffrey F.</creatorcontrib><creatorcontrib>Knowles, Tuomas P. J.</creatorcontrib><creatorcontrib>Dobson, Christopher M.</creatorcontrib><creatorcontrib>MacPhee, Cait E.</creatorcontrib><creatorcontrib>Welland, Mark E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Jeffrey F.</au><au>Knowles, Tuomas P. J.</au><au>Dobson, Christopher M.</au><au>MacPhee, Cait E.</au><au>Welland, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the Nanoscale Properties of Individual Amyloid Fibrils</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-10-24</date><risdate>2006</risdate><volume>103</volume><issue>43</issue><spage>15806</spage><epage>15811</epage><pages>15806-15811</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We report the detailed mechanical characterization of individual amyloid fibrils by atomic force microscopy and spectroscopy. These self-assembling materials, formed here from the protein insulin, were shown to have a strength of 0.6 ± 0.4 GPa, comparable to that of steel (0.6-1.8 GPa), and a mechanical stiffness, as measured by Young's modulus, of 3.3 ± 0.4 GPa, comparable to that of silk (1-10 GPa). The values of these parameters reveal that the fibrils possess properties that make these structures highly attractive for future technological applications. In addition, analysis of the solution-state growth kinetics indicated a breakage rate constant of 1.7 ± 1.3 x 10⁻⁸ s⁻¹, which reveals that a fibril 10 ¼m in length breaks spontaneously on average every 47 min, suggesting that internal fracturing is likely to be of fundamental importance in the proliferation of amyloid fibrils and therefore for understanding the progression of their associated pathogenic disorders.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17038504</pmid><doi>10.1073/pnas.0604035103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-10, Vol.103 (43), p.15806-15811
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201286980
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Amyloid - chemistry
Amyloid - metabolism
Amyloid - ultrastructure
Amyloids
Animals
Bending
Biological Sciences
Cattle
Insulin
Insulin - chemistry
Insulin - metabolism
Kinetics
Microscopy
Microscopy, Atomic Force
Nanostructures - chemistry
Nanostructures - ultrastructure
Pathogens
Polymers
Protein Binding
Proteins
Solar fibrils
Spectroscopy
Spectrum analysis
Spring constant
Stiffness
Structural deflection
title Characterization of the Nanoscale Properties of Individual Amyloid Fibrils
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20Nanoscale%20Properties%20of%20Individual%20Amyloid%20Fibrils&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Smith,%20Jeffrey%20F.&rft.date=2006-10-24&rft.volume=103&rft.issue=43&rft.spage=15806&rft.epage=15811&rft.pages=15806-15811&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0604035103&rft_dat=%3Cjstor_proqu%3E30052061%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c565t-8dcaf28fdd8e7e9f3b6c5c5e4a071b9df203aeb1f56ead1cd4ccbb089e549dc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201286980&rft_id=info:pmid/17038504&rft_jstor_id=30052061&rfr_iscdi=true