Loading…

Estimating a class of diffusions from discrete observations via approximate maximum likelihood method

An approximate maximum likelihood method of estimation of diffusion parameters based on discrete observations of a diffusion X along fixed time-interval and Euler approximation of integrals is analysed. We assume that X satisfies a stochastic differential equation (SDE) of form , with non-random ini...

Full description

Saved in:
Bibliographic Details
Published in:Statistics (Berlin, DDR) DDR), 2018-03, Vol.52 (2), p.239-272
Main Author: Huzak, Miljenko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-582c49958b2bc4f2a9ef28cb6f0101934d577ee7772c24aef18a65a89fa0cfdc3
cites cdi_FETCH-LOGICAL-c338t-582c49958b2bc4f2a9ef28cb6f0101934d577ee7772c24aef18a65a89fa0cfdc3
container_end_page 272
container_issue 2
container_start_page 239
container_title Statistics (Berlin, DDR)
container_volume 52
creator Huzak, Miljenko
description An approximate maximum likelihood method of estimation of diffusion parameters based on discrete observations of a diffusion X along fixed time-interval and Euler approximation of integrals is analysed. We assume that X satisfies a stochastic differential equation (SDE) of form , with non-random initial condition. SDE is nonlinear in generally. Based on assumption that maximum likelihood estimator of the drift parameter based on continuous observation of a path over exists we prove that measurable estimator of the parameters obtained from discrete observations of X along by maximization of the approximate log-likelihood function exists, being consistent and asymptotically normal, and tends to zero with rate in probability when tends to zero with T fixed. The same holds in case of an ergodic diffusion when T goes to infinity in a way that goes to zero with equidistant sampling, and we applied these to show consistency and asymptotical normality of , and asymptotic efficiency of in this case.
doi_str_mv 10.1080/02331888.2017.1382496
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012874937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012874937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-582c49958b2bc4f2a9ef28cb6f0101934d577ee7772c24aef18a65a89fa0cfdc3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwCUiWWKf4kcT2DlSVh1SJDawtx7GpSxIX2yn073FU2LKaGfncO54LwDVGC4w4ukWEUsw5XxCE2QJTTkpRn4AZRkQUpcDoFMwmppigc3AR4xYhVFPKZsCsYnK9Sm54hwrqTsUIvYWts3aMzg8R2uD7PEcdTDLQN9GEfeanp71TUO12wX9PFgb2KjdjDzv3YTq38b6FvUkb316CM6u6aK5-6xy8Paxel0_F-uXxeXm_LjSlPBUVJ7oUouINaXRpiRLGEq6b2iKMsKBlWzFmDGOMaFIqYzFXdaW4sApp22o6BzdH3_ynz9HEJLd-DENeKXM2hLNSUJap6kjp4GMMxspdyAeEg8RITonKv0QnFZO_iWbd3VHnButDr7586FqZ1KHzwQY1aBcl_d_iB3FQfzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012874937</pqid></control><display><type>article</type><title>Estimating a class of diffusions from discrete observations via approximate maximum likelihood method</title><source>Taylor and Francis Science and Technology Collection</source><creator>Huzak, Miljenko</creator><creatorcontrib>Huzak, Miljenko</creatorcontrib><description>An approximate maximum likelihood method of estimation of diffusion parameters based on discrete observations of a diffusion X along fixed time-interval and Euler approximation of integrals is analysed. We assume that X satisfies a stochastic differential equation (SDE) of form , with non-random initial condition. SDE is nonlinear in generally. Based on assumption that maximum likelihood estimator of the drift parameter based on continuous observation of a path over exists we prove that measurable estimator of the parameters obtained from discrete observations of X along by maximization of the approximate log-likelihood function exists, being consistent and asymptotically normal, and tends to zero with rate in probability when tends to zero with T fixed. The same holds in case of an ergodic diffusion when T goes to infinity in a way that goes to zero with equidistant sampling, and we applied these to show consistency and asymptotical normality of , and asymptotic efficiency of in this case.</description><identifier>ISSN: 0233-1888</identifier><identifier>EISSN: 1029-4910</identifier><identifier>DOI: 10.1080/02331888.2017.1382496</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Asymptotic properties ; Differential equations ; Diffusion ; diffusion processes ; discrete observation ; Maximum likelihood estimation ; Maximum likelihood estimators ; Maximum likelihood method ; Normality ; Parameter estimation ; Parameters</subject><ispartof>Statistics (Berlin, DDR), 2018-03, Vol.52 (2), p.239-272</ispartof><rights>2017 Informa UK Limited, trading as Taylor &amp; Francis Group 2017</rights><rights>2017 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-582c49958b2bc4f2a9ef28cb6f0101934d577ee7772c24aef18a65a89fa0cfdc3</citedby><cites>FETCH-LOGICAL-c338t-582c49958b2bc4f2a9ef28cb6f0101934d577ee7772c24aef18a65a89fa0cfdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Huzak, Miljenko</creatorcontrib><title>Estimating a class of diffusions from discrete observations via approximate maximum likelihood method</title><title>Statistics (Berlin, DDR)</title><description>An approximate maximum likelihood method of estimation of diffusion parameters based on discrete observations of a diffusion X along fixed time-interval and Euler approximation of integrals is analysed. We assume that X satisfies a stochastic differential equation (SDE) of form , with non-random initial condition. SDE is nonlinear in generally. Based on assumption that maximum likelihood estimator of the drift parameter based on continuous observation of a path over exists we prove that measurable estimator of the parameters obtained from discrete observations of X along by maximization of the approximate log-likelihood function exists, being consistent and asymptotically normal, and tends to zero with rate in probability when tends to zero with T fixed. The same holds in case of an ergodic diffusion when T goes to infinity in a way that goes to zero with equidistant sampling, and we applied these to show consistency and asymptotical normality of , and asymptotic efficiency of in this case.</description><subject>Asymptotic properties</subject><subject>Differential equations</subject><subject>Diffusion</subject><subject>diffusion processes</subject><subject>discrete observation</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Maximum likelihood method</subject><subject>Normality</subject><subject>Parameter estimation</subject><subject>Parameters</subject><issn>0233-1888</issn><issn>1029-4910</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwCUiWWKf4kcT2DlSVh1SJDawtx7GpSxIX2yn073FU2LKaGfncO54LwDVGC4w4ukWEUsw5XxCE2QJTTkpRn4AZRkQUpcDoFMwmppigc3AR4xYhVFPKZsCsYnK9Sm54hwrqTsUIvYWts3aMzg8R2uD7PEcdTDLQN9GEfeanp71TUO12wX9PFgb2KjdjDzv3YTq38b6FvUkb316CM6u6aK5-6xy8Paxel0_F-uXxeXm_LjSlPBUVJ7oUouINaXRpiRLGEq6b2iKMsKBlWzFmDGOMaFIqYzFXdaW4sApp22o6BzdH3_ynz9HEJLd-DENeKXM2hLNSUJap6kjp4GMMxspdyAeEg8RITonKv0QnFZO_iWbd3VHnButDr7586FqZ1KHzwQY1aBcl_d_iB3FQfzM</recordid><startdate>20180304</startdate><enddate>20180304</enddate><creator>Huzak, Miljenko</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180304</creationdate><title>Estimating a class of diffusions from discrete observations via approximate maximum likelihood method</title><author>Huzak, Miljenko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-582c49958b2bc4f2a9ef28cb6f0101934d577ee7772c24aef18a65a89fa0cfdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic properties</topic><topic>Differential equations</topic><topic>Diffusion</topic><topic>diffusion processes</topic><topic>discrete observation</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Maximum likelihood method</topic><topic>Normality</topic><topic>Parameter estimation</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huzak, Miljenko</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics (Berlin, DDR)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huzak, Miljenko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating a class of diffusions from discrete observations via approximate maximum likelihood method</atitle><jtitle>Statistics (Berlin, DDR)</jtitle><date>2018-03-04</date><risdate>2018</risdate><volume>52</volume><issue>2</issue><spage>239</spage><epage>272</epage><pages>239-272</pages><issn>0233-1888</issn><eissn>1029-4910</eissn><abstract>An approximate maximum likelihood method of estimation of diffusion parameters based on discrete observations of a diffusion X along fixed time-interval and Euler approximation of integrals is analysed. We assume that X satisfies a stochastic differential equation (SDE) of form , with non-random initial condition. SDE is nonlinear in generally. Based on assumption that maximum likelihood estimator of the drift parameter based on continuous observation of a path over exists we prove that measurable estimator of the parameters obtained from discrete observations of X along by maximization of the approximate log-likelihood function exists, being consistent and asymptotically normal, and tends to zero with rate in probability when tends to zero with T fixed. The same holds in case of an ergodic diffusion when T goes to infinity in a way that goes to zero with equidistant sampling, and we applied these to show consistency and asymptotical normality of , and asymptotic efficiency of in this case.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02331888.2017.1382496</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0233-1888
ispartof Statistics (Berlin, DDR), 2018-03, Vol.52 (2), p.239-272
issn 0233-1888
1029-4910
language eng
recordid cdi_proquest_journals_2012874937
source Taylor and Francis Science and Technology Collection
subjects Asymptotic properties
Differential equations
Diffusion
diffusion processes
discrete observation
Maximum likelihood estimation
Maximum likelihood estimators
Maximum likelihood method
Normality
Parameter estimation
Parameters
title Estimating a class of diffusions from discrete observations via approximate maximum likelihood method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20a%20class%20of%20diffusions%20from%20discrete%20observations%20via%20approximate%20maximum%20likelihood%20method&rft.jtitle=Statistics%20(Berlin,%20DDR)&rft.au=Huzak,%20Miljenko&rft.date=2018-03-04&rft.volume=52&rft.issue=2&rft.spage=239&rft.epage=272&rft.pages=239-272&rft.issn=0233-1888&rft.eissn=1029-4910&rft_id=info:doi/10.1080/02331888.2017.1382496&rft_dat=%3Cproquest_cross%3E2012874937%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-582c49958b2bc4f2a9ef28cb6f0101934d577ee7772c24aef18a65a89fa0cfdc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2012874937&rft_id=info:pmid/&rfr_iscdi=true