Loading…

Calcium Extrusion Is Critical for Cardiac Morphogenesis and Rhythm in Embryonic Zebrafish Hearts

Calcium entry into myocytes drives contraction of the embryonic heart. To prepare for the next contraction, myocytes must extrude calcium from intracellular space via the Na+/Ca2+exchanger (NCX1) or sequester it into the sarcoplasmic reticulum, via the sarcoplasmic reticulum$Ca^{2+}-ATPase2$(SERCA2)...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2005-12, Vol.102 (49), p.17705-17710
Main Authors: A. M. Ebert, G. L. Hume, Warren, K. S., N. P. Cook, C. G. Burns, M. A. Mohideen, G. Siegal, D. Yelon, M. G. Fishman, D. M. Garrity
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Calcium entry into myocytes drives contraction of the embryonic heart. To prepare for the next contraction, myocytes must extrude calcium from intracellular space via the Na+/Ca2+exchanger (NCX1) or sequester it into the sarcoplasmic reticulum, via the sarcoplasmic reticulum$Ca^{2+}-ATPase2$(SERCA2). In mammals, defective calcium extrusion correlates with increased intracellular calcium levels and may be relevant to heart failure and sarcoplasmic dysfunction in adults. We report here that mutation of the cardiac-specific NCX1 (NCX1h) gene causes embryonic lethal cardiac arrhythmia in zebrafish tremblor (tre) embryos. The tre ventricle is nearly silent, whereas the atrium manifests a variety of arrhythmias including fibrillation. Calcium extrusion defects in tre mutants correlate with severe disruptions in sarcomere assembly, whereas mutations in the L-type calcium channel that abort calcium entry do not produce this phenotype. Knockdown of SERCA2 activity by morpholino-mediated translational inhibition or pharmacological inhibition causes embryonic lethality due to defects in cardiac contractility and morphology but, in contrast to tre mutation, does not produce arrhythmia. Analysis of intracellular calcium levels indicates that homozygous tre embryos develop calcium overload, which may contribute to the degeneration of cardiac function in this mutant. Thus, the inhibition of NCX1h versus SERCA2 activity differentially affects the pathophysiology of rhythm in the developing heart and suggests that relative levels of NCX1 and SERCA2 function are essential for normal development.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0502683102