Loading…

Shedding Light on the Dark and Weakly Fluorescent States of Green Fluorescent Proteins

Recent experiments on various similar green fluorescent protein (GFP) mutants at the single-molecule level and in solution provide evidence of previously unknown short- and long-lived "dark" states and of related excited-state decay channels. Here, we present quantum chemical calculations...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1999-05, Vol.96 (11), p.6177-6182
Main Authors: Weber, Wolfgang, Helms, Volkhard, McCammon, J. Andrew, Langhoff, Peter W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c554t-ce32a9168aa70bdca58a1ed5c7817e27769101d3d037773914f80133224e85ea3
cites cdi_FETCH-LOGICAL-c554t-ce32a9168aa70bdca58a1ed5c7817e27769101d3d037773914f80133224e85ea3
container_end_page 6182
container_issue 11
container_start_page 6177
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 96
creator Weber, Wolfgang
Helms, Volkhard
McCammon, J. Andrew
Langhoff, Peter W.
description Recent experiments on various similar green fluorescent protein (GFP) mutants at the single-molecule level and in solution provide evidence of previously unknown short- and long-lived "dark" states and of related excited-state decay channels. Here, we present quantum chemical calculations on cis-trans photoisomerization paths of neutral, anionic, and zwitterionic GFP chromophores in their ground and first singlet excited states that explain the observed behaviors from a common perspective. The results suggest that favorable radiationless decay channels can exist for the different protonation states along these isomerizations, which apparently proceed via conical intersections. These channels are suggested to rationalize the observed dramatic reduction of fluorescence in solution. The observed single-molecule fast blinking is attributed to conversions between the fluorescent anionic and the dark zwitterionic forms whereas slow switching is attributed to conversions between the anionic and the neutral forms. The predicted nonadiabatic crossings are seen to rationalize the origins of a variety of experimental observations on a common basis and may have broad implications for photobiophysical mechanisms in GFP.
doi_str_mv 10.1073/pnas.96.11.6177
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201309422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>47844</jstor_id><sourcerecordid>47844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-ce32a9168aa70bdca58a1ed5c7817e27769101d3d037773914f80133224e85ea3</originalsourceid><addsrcrecordid>eNptkUtr3DAUhUVpaKZp14UuiuimK0909bAk6Kbk1cJAC-ljKRT7esYTx5pIckj-fW1mmkygKy3Od44O9xDyDtgcmBbHm96nuS3nAPMStH5BZsAsFKW07CWZMcZ1YSSXh-R1SmvGmFWGvSKHwISwqoQZ-X25wrpu-yVdtMtVpqGneYX01Mdr6vua_kF_3T3Q824IEVOFfaaX2WdMNDT0IiL2z7QfMWRs-_SGHDS-S_h29x6RX-dnP0--FovvF99OviyKSimZiwoF9xZK471mV3XllfGAtaq0AY1c69ICg1rUTGithQXZGAZCcC7RKPTiiHze5m6Gqxuspw7Rd24T2xsfH1zwrXuu9O3KLcOd46VRarR_3NljuB0wZbcOQ-zHxo6P_zArOR-h4y1UxZBSxOYxHpibVnDTCs6WDsBNK4yOD_ut9vjt2Ufg0w6YnP_kpwTXDF2X8T7vRf2fHIH3W2CdcoiPhNRGSvEXmV-kgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201309422</pqid></control><display><type>article</type><title>Shedding Light on the Dark and Weakly Fluorescent States of Green Fluorescent Proteins</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Weber, Wolfgang ; Helms, Volkhard ; McCammon, J. Andrew ; Langhoff, Peter W.</creator><creatorcontrib>Weber, Wolfgang ; Helms, Volkhard ; McCammon, J. Andrew ; Langhoff, Peter W.</creatorcontrib><description>Recent experiments on various similar green fluorescent protein (GFP) mutants at the single-molecule level and in solution provide evidence of previously unknown short- and long-lived "dark" states and of related excited-state decay channels. Here, we present quantum chemical calculations on cis-trans photoisomerization paths of neutral, anionic, and zwitterionic GFP chromophores in their ground and first singlet excited states that explain the observed behaviors from a common perspective. The results suggest that favorable radiationless decay channels can exist for the different protonation states along these isomerizations, which apparently proceed via conical intersections. These channels are suggested to rationalize the observed dramatic reduction of fluorescence in solution. The observed single-molecule fast blinking is attributed to conversions between the fluorescent anionic and the dark zwitterionic forms whereas slow switching is attributed to conversions between the anionic and the neutral forms. The predicted nonadiabatic crossings are seen to rationalize the origins of a variety of experimental observations on a common basis and may have broad implications for photobiophysical mechanisms in GFP.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.96.11.6177</identifier><identifier>PMID: 10339561</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Sequence ; Amino Acid Substitution ; Biochemistry ; Biological Sciences ; Biology ; Chromophores ; Fluorescence ; Green Fluorescent Proteins ; Ground state ; Isomerism ; Isomerization ; Isomers ; Kinetics ; Lead ; Luminescent Proteins - chemistry ; Luminescent Proteins - metabolism ; Models, Chemical ; Models, Molecular ; Molecules ; Mutagenesis, Site-Directed ; Photochemistry ; Physics ; Proteins ; Protons ; Quantum Theory ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1999-05, Vol.96 (11), p.6177-6182</ispartof><rights>Copyright 1993-1999 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 25, 1999</rights><rights>Copyright © 1999, The National Academy of Sciences 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-ce32a9168aa70bdca58a1ed5c7817e27769101d3d037773914f80133224e85ea3</citedby><cites>FETCH-LOGICAL-c554t-ce32a9168aa70bdca58a1ed5c7817e27769101d3d037773914f80133224e85ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/96/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/47844$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/47844$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10339561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, Wolfgang</creatorcontrib><creatorcontrib>Helms, Volkhard</creatorcontrib><creatorcontrib>McCammon, J. Andrew</creatorcontrib><creatorcontrib>Langhoff, Peter W.</creatorcontrib><title>Shedding Light on the Dark and Weakly Fluorescent States of Green Fluorescent Proteins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recent experiments on various similar green fluorescent protein (GFP) mutants at the single-molecule level and in solution provide evidence of previously unknown short- and long-lived "dark" states and of related excited-state decay channels. Here, we present quantum chemical calculations on cis-trans photoisomerization paths of neutral, anionic, and zwitterionic GFP chromophores in their ground and first singlet excited states that explain the observed behaviors from a common perspective. The results suggest that favorable radiationless decay channels can exist for the different protonation states along these isomerizations, which apparently proceed via conical intersections. These channels are suggested to rationalize the observed dramatic reduction of fluorescence in solution. The observed single-molecule fast blinking is attributed to conversions between the fluorescent anionic and the dark zwitterionic forms whereas slow switching is attributed to conversions between the anionic and the neutral forms. The predicted nonadiabatic crossings are seen to rationalize the origins of a variety of experimental observations on a common basis and may have broad implications for photobiophysical mechanisms in GFP.</description><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Chromophores</subject><subject>Fluorescence</subject><subject>Green Fluorescent Proteins</subject><subject>Ground state</subject><subject>Isomerism</subject><subject>Isomerization</subject><subject>Isomers</subject><subject>Kinetics</subject><subject>Lead</subject><subject>Luminescent Proteins - chemistry</subject><subject>Luminescent Proteins - metabolism</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Mutagenesis, Site-Directed</subject><subject>Photochemistry</subject><subject>Physics</subject><subject>Proteins</subject><subject>Protons</subject><subject>Quantum Theory</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNptkUtr3DAUhUVpaKZp14UuiuimK0909bAk6Kbk1cJAC-ljKRT7esYTx5pIckj-fW1mmkygKy3Od44O9xDyDtgcmBbHm96nuS3nAPMStH5BZsAsFKW07CWZMcZ1YSSXh-R1SmvGmFWGvSKHwISwqoQZ-X25wrpu-yVdtMtVpqGneYX01Mdr6vua_kF_3T3Q824IEVOFfaaX2WdMNDT0IiL2z7QfMWRs-_SGHDS-S_h29x6RX-dnP0--FovvF99OviyKSimZiwoF9xZK471mV3XllfGAtaq0AY1c69ICg1rUTGithQXZGAZCcC7RKPTiiHze5m6Gqxuspw7Rd24T2xsfH1zwrXuu9O3KLcOd46VRarR_3NljuB0wZbcOQ-zHxo6P_zArOR-h4y1UxZBSxOYxHpibVnDTCs6WDsBNK4yOD_ut9vjt2Ufg0w6YnP_kpwTXDF2X8T7vRf2fHIH3W2CdcoiPhNRGSvEXmV-kgA</recordid><startdate>19990525</startdate><enddate>19990525</enddate><creator>Weber, Wolfgang</creator><creator>Helms, Volkhard</creator><creator>McCammon, J. Andrew</creator><creator>Langhoff, Peter W.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19990525</creationdate><title>Shedding Light on the Dark and Weakly Fluorescent States of Green Fluorescent Proteins</title><author>Weber, Wolfgang ; Helms, Volkhard ; McCammon, J. Andrew ; Langhoff, Peter W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-ce32a9168aa70bdca58a1ed5c7817e27769101d3d037773914f80133224e85ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Chromophores</topic><topic>Fluorescence</topic><topic>Green Fluorescent Proteins</topic><topic>Ground state</topic><topic>Isomerism</topic><topic>Isomerization</topic><topic>Isomers</topic><topic>Kinetics</topic><topic>Lead</topic><topic>Luminescent Proteins - chemistry</topic><topic>Luminescent Proteins - metabolism</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Mutagenesis, Site-Directed</topic><topic>Photochemistry</topic><topic>Physics</topic><topic>Proteins</topic><topic>Protons</topic><topic>Quantum Theory</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Wolfgang</creatorcontrib><creatorcontrib>Helms, Volkhard</creatorcontrib><creatorcontrib>McCammon, J. Andrew</creatorcontrib><creatorcontrib>Langhoff, Peter W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Wolfgang</au><au>Helms, Volkhard</au><au>McCammon, J. Andrew</au><au>Langhoff, Peter W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shedding Light on the Dark and Weakly Fluorescent States of Green Fluorescent Proteins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1999-05-25</date><risdate>1999</risdate><volume>96</volume><issue>11</issue><spage>6177</spage><epage>6182</epage><pages>6177-6182</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recent experiments on various similar green fluorescent protein (GFP) mutants at the single-molecule level and in solution provide evidence of previously unknown short- and long-lived "dark" states and of related excited-state decay channels. Here, we present quantum chemical calculations on cis-trans photoisomerization paths of neutral, anionic, and zwitterionic GFP chromophores in their ground and first singlet excited states that explain the observed behaviors from a common perspective. The results suggest that favorable radiationless decay channels can exist for the different protonation states along these isomerizations, which apparently proceed via conical intersections. These channels are suggested to rationalize the observed dramatic reduction of fluorescence in solution. The observed single-molecule fast blinking is attributed to conversions between the fluorescent anionic and the dark zwitterionic forms whereas slow switching is attributed to conversions between the anionic and the neutral forms. The predicted nonadiabatic crossings are seen to rationalize the origins of a variety of experimental observations on a common basis and may have broad implications for photobiophysical mechanisms in GFP.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10339561</pmid><doi>10.1073/pnas.96.11.6177</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1999-05, Vol.96 (11), p.6177-6182
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201309422
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Amino Acid Sequence
Amino Acid Substitution
Biochemistry
Biological Sciences
Biology
Chromophores
Fluorescence
Green Fluorescent Proteins
Ground state
Isomerism
Isomerization
Isomers
Kinetics
Lead
Luminescent Proteins - chemistry
Luminescent Proteins - metabolism
Models, Chemical
Models, Molecular
Molecules
Mutagenesis, Site-Directed
Photochemistry
Physics
Proteins
Protons
Quantum Theory
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Thermodynamics
title Shedding Light on the Dark and Weakly Fluorescent States of Green Fluorescent Proteins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shedding%20Light%20on%20the%20Dark%20and%20Weakly%20Fluorescent%20States%20of%20Green%20Fluorescent%20Proteins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Weber,%20Wolfgang&rft.date=1999-05-25&rft.volume=96&rft.issue=11&rft.spage=6177&rft.epage=6182&rft.pages=6177-6182&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.96.11.6177&rft_dat=%3Cjstor_proqu%3E47844%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c554t-ce32a9168aa70bdca58a1ed5c7817e27769101d3d037773914f80133224e85ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201309422&rft_id=info:pmid/10339561&rft_jstor_id=47844&rfr_iscdi=true