Loading…

Vaccinia Virus Encodes a Previously Uncharacterized Mitochondrial-Associated Inhibitor of Apoptosis

To circumvent apoptotic death, many viruses encode Bcl-2 homologous proteins that function at the mitochondria. Vaccinia virus, the prototypic member of the Poxviridae family, does not encode a Bcl-2 homolog but inhibits the mitochondrial arm of the apoptotic cascade by an unknown mechanism. We now...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2003-11, Vol.100 (24), p.14345-14350
Main Authors: Wasilenko, Shawn T., Stewart, Tara L., Adrienne F. A. Meyers, Barry, Michele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To circumvent apoptotic death, many viruses encode Bcl-2 homologous proteins that function at the mitochondria. Vaccinia virus, the prototypic member of the Poxviridae family, does not encode a Bcl-2 homolog but inhibits the mitochondrial arm of the apoptotic cascade by an unknown mechanism. We now report that F1L, a previously unidentified protein in vaccinia virus, is responsible for the inhibition of apoptosis. Cells infected with vaccinia virus are resistant to staurosporine-mediated cleavage of poly(ADP-ribose) polymerase, caspases 3 and 9, and release of cytochrome c. In contrast, a vaccinia virus deletion mutant, VV811, was unable to inhibit apoptosis; however, the antiapoptotic function was restored by expression of the F1L ORF, which is absent in VV811. Although F1L displays no homology to members of the Bcl-2 family, it localizes to the mitochondria through a C-terminal hydrophobic domain. We show that expression of F1L interferes with apoptosis by inhibiting the loss of the inner mitochondrial membrane potential and the release of cytochrome c.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2235583100