Loading…

Libraries against libraries for combinatorial selection of replicating antigen-antibody pairs

Antibodies are among the most highly selective tight-binding ligands for proteins. Because the human genome project has deciphered the proteome, there is an opportunity to use combinatorial antibody libraries to select high-affinity antibodies to every protein encoded by the genome. However, this is...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2009-02, Vol.106 (5), p.1380-1385
Main Authors: Bowley, Diana R, Jones, Teresa M, Burton, Dennis R, Lerner, Richard A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Antibodies are among the most highly selective tight-binding ligands for proteins. Because the human genome project has deciphered the proteome, there is an opportunity to use combinatorial antibody libraries to select high-affinity antibodies to every protein encoded by the genome. However, this is a large task because the selection formats used today for combinatorial antibody libraries are geared toward generating antibodies to one antigen at a time. Here, we describe a method that accelerates the identification of antibodies to a multitude of antigens simultaneously by matching combinatorial antibody libraries against eukaryotic antigen libraries so that replication-competent cognate antigen-antibody pairs can be directly selected. Phage and yeast display systems are used because they each link genotype to phenotype and can be replicated individually. When combined with cell sorting, the two libraries can be selected against each other for recovery of cognate antigen-antibody clones in a single experiment.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0812291106