Loading…
Selective Modulation of Excitatory and Inhibitory Microcircuits by Dopamine
Dopamine plays an important role in the working memory functions of the prefrontal cortex, functions that are impacted in age-related memory decline, drug abuse, and a wide variety of disorders, including schizophrenia and Parkinson's disease. We have previously reported that dopamine depresses...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2003-03, Vol.100 (5), p.2836-2841 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dopamine plays an important role in the working memory functions of the prefrontal cortex, functions that are impacted in age-related memory decline, drug abuse, and a wide variety of disorders, including schizophrenia and Parkinson's disease. We have previously reported that dopamine depresses excitatory transmission between pyramidal neurons in the prefrontal cortex. Here, using paired recordings, we have investigated dopaminergic modulation of excitatory transmission from pyramidal neurons to fast-spiking (FS) interneurons. In contrast to its effect on recurrent excitation, dopamine was without effect on excitatory transmission to FS interneurons. However, dopamine has directly enhanced the excitability of the FS interneurons to the extent that even a single excitatory postsynaptic potential could initiate spiking with great temporal precision in some of them. These results indicate that dopamine's effects on excitatory transmission are target-specific and that the axon terminals of pyramidal neurons can be selectively regulated at the level of individual synapses. Thus, dopamine's net inhibitory effect on cortical function is remarkably constrained by the nature of the microcircuit elements on which it acts. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.262796399 |