Loading…

HLA-G Gene Repression Is Reversed by Demethylation

The HLA-G molecule plays an important role in immune tolerance, protecting the fetus from maternal immune attack, and probably contributes to graft tolerance and tumor escape from the host immune system. HLA-G expression is tightly regulated and involves mechanisms acting in part at the transcriptio...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2003-02, Vol.100 (3), p.1191-1196
Main Authors: Moreau, Philippe, Mouillot, Gaël, Rousseau, Philippe, Marcou, Céline, Dausset, Jean, Carosella, Edgardo D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The HLA-G molecule plays an important role in immune tolerance, protecting the fetus from maternal immune attack, and probably contributes to graft tolerance and tumor escape from the host immune system. HLA-G expression is tightly regulated and involves mechanisms acting in part at the transcriptional level. Nevertheless, almost all regulatory sequences that govern constitutive and inducible HLA class I gene transcription are disrupted in the HLA-G gene promoter, suggesting an unusual regulatory process. In further investigating the molecular mechanisms of HLA-G gene activation, we evaluated the influence of epigenetic mechanisms on seven HLA-G-negative cell lines that exhibit various phenotypes. Exposure of cells to histone deacetylase inhibitors, or to the demethylating agent 5-aza-2′-deoxycytidine, revealed that HLA-G gene transcription is inhibited by DNA methylation. Reversal of methylation-mediated repression may directly induce HLA-G cell-surface expression, supporting the idea that HLA-G might be activated by such a mechanism during malignancy, inflammation, and allogenic reactions.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0337539100