Loading…

Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens

Phytopathogenic oomycetes cause some of the most devastating diseases affecting agricultural crops. Hyaloperonospora parasitica is a native oomycete pathogen of Arabidopsis and is related to other oomycete phytopathogens that include several species of Phytophthora, including the causal agent of pot...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2008-01, Vol.105 (3), p.1091-1096
Main Authors: Rentel, Maike C, Leonelli, Lauriebeth, Dahlbeck, Douglas, Zhao, Bingyu, Staskawicz, Brian J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phytopathogenic oomycetes cause some of the most devastating diseases affecting agricultural crops. Hyaloperonospora parasitica is a native oomycete pathogen of Arabidopsis and is related to other oomycete phytopathogens that include several species of Phytophthora, including the causal agent of potato late blight. Recently, four oomycete effector genes have been isolated, and several oomycete genomes have been sequenced. We have developed an efficient and genetically amenable system to test putative effector genes using the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. The H. parasitica effector protein ATR13 was delivered via P. syringae by fusing the ATR13 gene with the avrRpm1 type three secretion signal peptide, a bacterial sequence that allows transfer of proteins into the host cell through the bacterial type III secretion system. We also inserted ATR13 into the genome of the turnip mosaic virus, a single-stranded RNA virus. Our results show that delivery of ATR13 via the bacterial or viral pathogen triggers defense responses in plants containing the cognate resistance protein RPP13Nd, which restricts proliferation of both pathogens. Hence, recognition of ATR13 by RPP13 initiates defense responses that are effective against oomycete, bacterial and viral pathogens, pointing to a common defense mechanism. We have characterized regions of the RPP13Nd resistance protein that are essential for effector recognition and/or downstream signaling, using transient coexpression in Nicotiana benthamiana.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0711215105