Loading…

Conversion of Monomeric Protein L to an Obligate Dimer by Computational Protein Design

Protein L consists of a single α-helix packed on a four-stranded β-sheet formed by two symmetrically opposed β-hairpins. We use a computer-based protein design procedure to stabilize a domain-swapped dimer of protein L in which the second β-turn straightens and the C-terminal strand inserts into the...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2001-09, Vol.98 (19), p.10687-10691
Main Authors: Kuhlman, Brian, O'Neill, Jason W., Kim, David E., Kam Y. J. Zhang, Baker, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c555t-2b4d7f5cfdd1b082e37e24d73368fdb5fd3468a5c59a814afc879371bac36fbb3
cites cdi_FETCH-LOGICAL-c555t-2b4d7f5cfdd1b082e37e24d73368fdb5fd3468a5c59a814afc879371bac36fbb3
container_end_page 10691
container_issue 19
container_start_page 10687
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 98
creator Kuhlman, Brian
O'Neill, Jason W.
Kim, David E.
Kam Y. J. Zhang
Baker, David
description Protein L consists of a single α-helix packed on a four-stranded β-sheet formed by two symmetrically opposed β-hairpins. We use a computer-based protein design procedure to stabilize a domain-swapped dimer of protein L in which the second β-turn straightens and the C-terminal strand inserts into the β-sheet of the partner. The designed obligate dimer contains three mutations (A52V, N53P, and G55A) and has a dissociation constant of ≈700 pM, which is comparable to the dissociation constant of many naturally occurring protein dimers. The structure of the dimer has been determined by x-ray crystallography and is close to the in silico model.
doi_str_mv 10.1073/pnas.181354398
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201367912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3056600</jstor_id><sourcerecordid>3056600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-2b4d7f5cfdd1b082e37e24d73368fdb5fd3468a5c59a814afc879371bac36fbb3</originalsourceid><addsrcrecordid>eNp9kc9vFCEYhomxsWvr1ZNR0pOX2fJjYCDxYrZqTdbUg-2VwAysbGZhC0zT_vey2XXViycSvud588ELwGuM5hh19HIbdJ5jgSlrqRTPwAwjiRveSvQczBAiXSNa0p6ClzmvEUKSCfQCnGLMCCdIzMDdIoYHm7KPAUYHv8UQNzb5Hn5PsVgf4BKWCHWAN2b0K10svPIVgOYJLuJmOxVdqqrHI39ls1-Fc3Di9Jjtq8N5Bm4_f_qxuG6WN1--Lj4um54xVhpi2qFzrHfDgA0SxNLOknpFKRduMMwNtOVCs55JLXCrXS86STtsdE-5M4aegQ_73O1kNnbobShJj2qb_EanJxW1V_9Ogv-pVvFBMcFIV_WLg57i_WRzUes4pfqcrAjClHcSkwrN91CfYs7JumM8RmpXgtqVoI4lVOHt30v9wQ-_XoF3B2An_h5LobCsgVzsFnv_f0K5aRyLfSwVfbNH17nEdGQpYpwjRH8B87umRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201367912</pqid></control><display><type>article</type><title>Conversion of Monomeric Protein L to an Obligate Dimer by Computational Protein Design</title><source>NCBI_PubMed Central(免费)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Kuhlman, Brian ; O'Neill, Jason W. ; Kim, David E. ; Kam Y. J. Zhang ; Baker, David</creator><creatorcontrib>Kuhlman, Brian ; O'Neill, Jason W. ; Kim, David E. ; Kam Y. J. Zhang ; Baker, David</creatorcontrib><description>Protein L consists of a single α-helix packed on a four-stranded β-sheet formed by two symmetrically opposed β-hairpins. We use a computer-based protein design procedure to stabilize a domain-swapped dimer of protein L in which the second β-turn straightens and the C-terminal strand inserts into the β-sheet of the partner. The designed obligate dimer contains three mutations (A52V, N53P, and G55A) and has a dissociation constant of ≈700 pM, which is comparable to the dissociation constant of many naturally occurring protein dimers. The structure of the dimer has been determined by x-ray crystallography and is close to the in silico model.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.181354398</identifier><identifier>PMID: 11526208</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Bacterial Proteins ; Biochemistry ; Biological Sciences ; CAD ; Computer aided design ; Crystal structure ; Crystallography ; Dimerization ; Dimers ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; Free energy ; Guanidine ; Models, Molecular ; Molecules ; Monomers ; Mutagenesis ; Mutation ; Oligomers ; Protein Denaturation ; Protein Structure, Secondary ; Proteins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-09, Vol.98 (19), p.10687-10691</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 11, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-2b4d7f5cfdd1b082e37e24d73368fdb5fd3468a5c59a814afc879371bac36fbb3</citedby><cites>FETCH-LOGICAL-c555t-2b4d7f5cfdd1b082e37e24d73368fdb5fd3468a5c59a814afc879371bac36fbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3056600$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3056600$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11526208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuhlman, Brian</creatorcontrib><creatorcontrib>O'Neill, Jason W.</creatorcontrib><creatorcontrib>Kim, David E.</creatorcontrib><creatorcontrib>Kam Y. J. Zhang</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><title>Conversion of Monomeric Protein L to an Obligate Dimer by Computational Protein Design</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Protein L consists of a single α-helix packed on a four-stranded β-sheet formed by two symmetrically opposed β-hairpins. We use a computer-based protein design procedure to stabilize a domain-swapped dimer of protein L in which the second β-turn straightens and the C-terminal strand inserts into the β-sheet of the partner. The designed obligate dimer contains three mutations (A52V, N53P, and G55A) and has a dissociation constant of ≈700 pM, which is comparable to the dissociation constant of many naturally occurring protein dimers. The structure of the dimer has been determined by x-ray crystallography and is close to the in silico model.</description><subject>Amino acids</subject><subject>Bacterial Proteins</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Free energy</subject><subject>Guanidine</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Monomers</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Oligomers</subject><subject>Protein Denaturation</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9kc9vFCEYhomxsWvr1ZNR0pOX2fJjYCDxYrZqTdbUg-2VwAysbGZhC0zT_vey2XXViycSvud588ELwGuM5hh19HIbdJ5jgSlrqRTPwAwjiRveSvQczBAiXSNa0p6ClzmvEUKSCfQCnGLMCCdIzMDdIoYHm7KPAUYHv8UQNzb5Hn5PsVgf4BKWCHWAN2b0K10svPIVgOYJLuJmOxVdqqrHI39ls1-Fc3Di9Jjtq8N5Bm4_f_qxuG6WN1--Lj4um54xVhpi2qFzrHfDgA0SxNLOknpFKRduMMwNtOVCs55JLXCrXS86STtsdE-5M4aegQ_73O1kNnbobShJj2qb_EanJxW1V_9Ogv-pVvFBMcFIV_WLg57i_WRzUes4pfqcrAjClHcSkwrN91CfYs7JumM8RmpXgtqVoI4lVOHt30v9wQ-_XoF3B2An_h5LobCsgVzsFnv_f0K5aRyLfSwVfbNH17nEdGQpYpwjRH8B87umRQ</recordid><startdate>20010911</startdate><enddate>20010911</enddate><creator>Kuhlman, Brian</creator><creator>O'Neill, Jason W.</creator><creator>Kim, David E.</creator><creator>Kam Y. J. Zhang</creator><creator>Baker, David</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20010911</creationdate><title>Conversion of Monomeric Protein L to an Obligate Dimer by Computational Protein Design</title><author>Kuhlman, Brian ; O'Neill, Jason W. ; Kim, David E. ; Kam Y. J. Zhang ; Baker, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-2b4d7f5cfdd1b082e37e24d73368fdb5fd3468a5c59a814afc879371bac36fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amino acids</topic><topic>Bacterial Proteins</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Free energy</topic><topic>Guanidine</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Monomers</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Oligomers</topic><topic>Protein Denaturation</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuhlman, Brian</creatorcontrib><creatorcontrib>O'Neill, Jason W.</creatorcontrib><creatorcontrib>Kim, David E.</creatorcontrib><creatorcontrib>Kam Y. J. Zhang</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuhlman, Brian</au><au>O'Neill, Jason W.</au><au>Kim, David E.</au><au>Kam Y. J. Zhang</au><au>Baker, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conversion of Monomeric Protein L to an Obligate Dimer by Computational Protein Design</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-09-11</date><risdate>2001</risdate><volume>98</volume><issue>19</issue><spage>10687</spage><epage>10691</epage><pages>10687-10691</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Protein L consists of a single α-helix packed on a four-stranded β-sheet formed by two symmetrically opposed β-hairpins. We use a computer-based protein design procedure to stabilize a domain-swapped dimer of protein L in which the second β-turn straightens and the C-terminal strand inserts into the β-sheet of the partner. The designed obligate dimer contains three mutations (A52V, N53P, and G55A) and has a dissociation constant of ≈700 pM, which is comparable to the dissociation constant of many naturally occurring protein dimers. The structure of the dimer has been determined by x-ray crystallography and is close to the in silico model.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11526208</pmid><doi>10.1073/pnas.181354398</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2001-09, Vol.98 (19), p.10687-10691
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201367912
source NCBI_PubMed Central(免费); JSTOR Archival Journals and Primary Sources Collection
subjects Amino acids
Bacterial Proteins
Biochemistry
Biological Sciences
CAD
Computer aided design
Crystal structure
Crystallography
Dimerization
Dimers
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
Free energy
Guanidine
Models, Molecular
Molecules
Monomers
Mutagenesis
Mutation
Oligomers
Protein Denaturation
Protein Structure, Secondary
Proteins
title Conversion of Monomeric Protein L to an Obligate Dimer by Computational Protein Design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conversion%20of%20Monomeric%20Protein%20L%20to%20an%20Obligate%20Dimer%20by%20Computational%20Protein%20Design&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kuhlman,%20Brian&rft.date=2001-09-11&rft.volume=98&rft.issue=19&rft.spage=10687&rft.epage=10691&rft.pages=10687-10691&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.181354398&rft_dat=%3Cjstor_proqu%3E3056600%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-2b4d7f5cfdd1b082e37e24d73368fdb5fd3468a5c59a814afc879371bac36fbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201367912&rft_id=info:pmid/11526208&rft_jstor_id=3056600&rfr_iscdi=true