Loading…

Adaptive Power Allocation and Splitting with Imperfect Channel Estimation in Energy Harvesting Based Self-Organizing Networks

As miniature-sized embedded computing platforms are ubiquitously deployed to our everyday environments, the issue of managing their power usage becomes important, especially when they are used in energy harvesting based self-organizing networks. One way to provide these devices with continuous power...

Full description

Saved in:
Bibliographic Details
Published in:Mobile information systems 2016-01, Vol.2016 (2016), p.1-7
Main Authors: Lee, Kisong, Ko, JeongGil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As miniature-sized embedded computing platforms are ubiquitously deployed to our everyday environments, the issue of managing their power usage becomes important, especially when they are used in energy harvesting based self-organizing networks. One way to provide these devices with continuous power is to utilize RF-based energy transfer. Previous research in RF-based information and energy transfer builds up on the assumption that perfect channel estimation is easily achievable. However, as our preliminary experiments and many previous literature in wireless network systems show, making perfect estimations of the wireless channel is extremely challenging due to their quality fluctuations. To better reflect reality, in this work, we introduce an adaptive power allocation and splitting (APAS) scheme which takes imperfect channel estimations into consideration. Our evaluation results show that the proposed APAS scheme achieves near-optimal performances for transferring energy and data over a single RF transmission.
ISSN:1574-017X
1875-905X
DOI:10.1155/2016/8243090