Loading…
Plaque-Induced Neurite Abnormalities: Implications for Disruption of Neural Networks in Alzheimer's Disease
The brains of Alzheimer's disease patients contain extracellular Aβ amyloid deposits (senile plaques). Although genetic evidence causally links Aβ deposition to the disease, the mechanism by which Aβ disrupts cortical function is unknown. Using triple immunofluorescent confocal microscopy and t...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1999-04, Vol.96 (9), p.5274-5279 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The brains of Alzheimer's disease patients contain extracellular Aβ amyloid deposits (senile plaques). Although genetic evidence causally links Aβ deposition to the disease, the mechanism by which Aβ disrupts cortical function is unknown. Using triple immunofluorescent confocal microscopy and three-dimensional reconstructions, we found that neuronal processes that cross through an Aβ deposit are likely to have a radically changed morphology. We modeled the electrophysiological effect of this changed morphology and found a predicted delay of several milliseconds over an average plaque. We propose that this type of delay, played out among thousands of plaques throughout neocortical areas, disrupts the precise temporal firing patterns of action potentials, contributing directly to neural system failure and dementia. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.96.9.5274 |